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A GENERALISED RICCI-HESSIAN EQUATION
ON RIEMANNIAN MANIFOLDS

Nicolas Ginoux and Georges Habib

Abstract. In this paper, we prove new rigidity results related to some
generalised Ricci-Hessian equation on Riemannian manifolds.

1. Introduction

In this article, which follows [8], we continue investigating those Riemannian
manifolds (Mn, g) supporting a non-identically-vanishing function f satisfying what
we call the generalised Ricci-Hessian equation [8, Eq. (1)]
(1) ∇2f = −f · Ric
on M , where ∇2f := ∇∇f denotes the Hessian of f and Ric the Ricci-tensor
of (Mn, g), both seen as (1, 1)-tensor fields. Recall that this equation was first
considered when studying the so-called skew-Killing-spinor-equation [9], where
f is a particular function built out of a so-called skew-Killing spinor, see [8] for
more details. Recall also that, although equation (1) looks like those considered by
other authors in the search of warped product Einstein metrics [14, 12], Lorentzian
Einstein metrics [6], quasi-Einstein metrics [4, 10] or gradient Ricci solitons [7],
it is not connected to any of those frameworks and therefore needs very different
kinds of techniques, hence leading to very different results. Again, we refer to the
introduction of [8] for more references and details.

In [8], we proved that, provided sufficiently many symmetries preserving a
solution f are available on the underlying manifold (Mn, g), only one of the
following can occur: unless f is constant and then (Mn, g) is Ricci-flat, either
(Mn, g) is isometric to the Riemannian product of a real interval with a Ricci-flat
manifold and f is an affine-linear function on the interval; or (Mn, g) is isometric
to the Riemannian product of a Ricci-flat manifold with either the 2-sphere or
the hyperbolic plane and f is the trivial extension of a solution to the Obata resp.
Tashiro equation on the second factor.

In this article, we show that, in many further situations, some of which are
more general than those from [8], mostly only those two possibilities can occur:
namely when M has harmonic curvature tensor (Theorem 2.3), is a warped product
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(Theorem 3.4), when the space of solutions is of dimension at least 2 (Theorem
4.1), when M is homogeneous (Theorem 5.1) and when M is Kähler (Theorem
6.1).

The article is structured as follows. After preliminary remarks in Section 2, we
describe and partially classify those warped products carrying solutions to (1).
In Section 4, we turn to the case where the space of solutions to (1) is at least
2-dimensional. Section 5 is dedicated to the homogeneous case, which remains
partially open. We dedicate Section 6 to the case where the manifold is Kähler.
We conclude by an outlook (Section 7) about further work related to the above
equation.

In order for the article to remain as self-contained as possible, we included parts
of [8] in Section 2.

We underline that no full classification is available yet. This is the object of
future work.
Acknowledgement. Part of this work was done while the second-named author
received the support of the Humboldt Foundation, the French embassy in Beirut via
the SAFAR programme and the Alfried Krupp Wissenschaftskolleg, which he would
like to thank. We thank the Centre International de Rencontres Mathématiques
(CIRM) where the article was finished. We also thank Ines Kath for her support
and interest in the first part of that work and Gilles Carron for very interesting
feedback. Last but not the least, we thank the referee as well as the editors of
Archivum Mathematicum for the positive remarks and efficient work.

2. Preliminary remarks

We start with preliminary results, some of which are already contained in [8]
but, for the sake of self-containedness, we give and reprove them here. From now
on, we shall denote by S the scalar curvature of M and, for any function h on M ,
by ∇h the gradient vector field of h w.r.t. g on M . First observe that the equation
∇2f = −f ·Ric is of course linear in f but is also invariant under metric rescaling:
if g = λ2g for some nonzero real number λ, then ∇2

f = λ−2∇2
f (this comes from

the rescaling of the gradient) and Ric = λ−2Ric. Let us denote by
W (Mn, g) :=

{
f ∈ C∞(M,R) | ∇2f = −f · Ric

}
the real vector space of all smooth functions satisfying (1) on (Mn, g).

Lemma 2.1 below corresponds to [8, Lemma 2.1] expanded with claims 3, 7 and
8.

Lemma 2.1. Let (Mn, g) be any connected Riemannian manifold carrying a
smooth real-valued function f satisfying (1) on M .
1. The gradient vector field ∇f of f w.r.t. g satisfies

(2) Ric(∇f) = S

2∇f + f

4∇S .

2. There exists a real constant µ such that
(3) f∆f + 2|∇f |2 = µ .
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3. The identity

(4) f |Ric|2 = fS2

2 − 1
4 〈∇f,∇S〉+ f

4 ∆S

holds on M .
4. If n > 2 and f is everywhere positive or negative, then f solves (1) if and only

if, setting u := 1
2−n ln |f |, the metric g := e2ug satisfies ric = (∆u)g − (n −

2)(n− 3)du⊗ du on M and in that case ∆u = − µ
n−2e

2(n−3)u. In particular, if
n = 3, the existence of a positive solution f to (1) is equivalent to (M,f−2g)
being Einstein with scalar curvature −3∆ ln |f |.

5. If M is closed and f is everywhere positive or negative, then f is constant on
M .

6. If nonempty, the vanishing set N0 := f−1({0}) of f is a scalar-flat totally
geodesic hypersurface of M .

7. For any x ∈M and all X,Y ∈ TxM , the identity
(5) RX,Y∇f = −X(f)Ric(Y ) + Y (f)Ric(X)− f ((∇XRic)Y − (∇Y Ric)X)

holds on M . As a consequence, at any critical point of f , the Ricci-tensor must
be Codazzi.

8. The dimension of W (Mn, g) is always at most n+ 1.
9. If furthermore M is Einstein or 2-dimensional, then M is Ricci-flat or n = 2 and

in that case M has constant curvature. In particular, when (M2, g) is complete,
there exists a nonconstant function f satisfying (1) if and only if, up to rescaling
the metric, the manifold (M2, g) is isometric to either the round sphere S2 and
f is a nonzero eigenfunction associated to the first positive Laplace eigenvalue;
or to flat R2 or cylinder S1 × R and f is an affine-linear function; or to the
hyperbolic plane H2 and f is a solution to the Tashiro equation ∇2f = f · Id.

10. If S is constant, then outside the set of critical points of f , the vector field
ν := ∇f

|∇f | is geodesic. Moreover, assuming (Mn, g) to be also complete,

(a) if S > 0, then up to rescaling the metric as well as f , we may assume that
S = 2 and that µ = f∆f + 2|∇f |2 = 2 on M , in which case the function f
has 1 as maximum and −1 as minimum value and those are the only critical
values of f ;

(b) if S = 0 and f is nonconstant, then (Mn, g) is Ricci-flat, in particular it
is isometric to (R× Σ, dt2 ⊕ gΣ) for some complete Ricci-flat Riemannian
manifold (Σ, gΣ) and, up to reparametrization, the function f is given by
f(t, x) = t for all (t, x) ∈ R× Σ;

(c) if S < 0, then up to rescaling the metric, we may assume that S = −2 on
M , in which case one of the following holds:

(i) if µ > 0, then up to rescaling f we may assume that µ = 2, in
which case f has no critical value and f(M) = R, in particular M is
noncompact;
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(ii) if µ = 0, then f has no critical value and empty vanishing set and, up
to changing f into −f , we have f(M) = (0,∞), in particular M is
noncompact;

(iii) if µ < 0, then up to rescaling f we may assume that µ = −2, in
which case f has a unique critical value, which, up to changing f into
−f , can be assumed to be a minimum; moreover, f(M) = [1,∞), in
particular M is noncompact.

Proof. The proof of statement 1. follows that of [18, Lemma 4]. On the one hand,
we take the codifferential of ∇2f and obtain, choosing a local orthonormal basis
(ej)1≤j≤n of TM and using the Weitzenböck formula for 1-forms:

δ∇2f = −
n∑
j=1

(
∇ej∇2f

)
(ej)

= −
n∑
j=1

(
∇ej∇ej∇f −∇∇ej ej∇f

)
= ∇∗∇(∇f)
= ∆(∇f)− Ric(∇f) .(6)

On the other hand, by (1) and the formula δRic = − 1
2∇S,

δ∇2f = δ (−f · Ric)
= Ric(∇f)− f · δRic

= Ric(∇f) + f

2∇S .

Comparing both identities, we deduce that ∆(∇f) = 2Ric(∇f)+ f
2∇S. But identity

(1) also gives

(7) ∆f = −tr
(
∇2f

)
= fS ,

so that ∆(∇f) = ∇(∆f) = ∇(fS) = S∇f + f∇S and therefore Ric(∇f) =
S
2∇f + f

4∇S, which is (2).
By (1) and (2), we have

2∇(|∇f |2) = 4∇2
∇ff

= −4f · Ric(∇f)

= −4f ·
(
S

2∇f + f

4∇S
)

= −2Sf∇f − f2∇S
= −∇(Sf2)
(7)= −∇(f∆f) ,

from which (3) follows.
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Taking the codifferential of (2), we obtain on the one hand, using δRic = − 1
2∇S:

δ(Ric∇f) = 〈δRic,∇f〉 − 〈Ric,∇2f〉
(1)= −1

2 〈∇S,∇f〉+ f |Ric|2.

On the other hand, the codifferential of the r.h.s. of (2) is given by

δ(S2∇f + f

4∇S) = −1
2 〈∇S,∇f〉+ S

2 ∆f − 1
4 〈∇f,∇S〉+ f

4 ∆S

= −3
4 〈∇f,∇S〉+ S2f

2 + f

4 ∆S .

Comparing both identities yields (4).
If f vanishes nowhere, then up to changing f into −f , we may assume that f > 0

on M . Writing f as e(2−n)u for some real-valued function u (that is, u = 1
2−n ln f),

the Ricci-curvatures (as (0, 2)-tensor fields) ric and ric of (M, g) and (M, g = e2ug)
respectively are related as follows:

(8) ric = ric + (2− n)(∇du− du⊗ du) + (∆u− (n− 2)|du|2g)g .

But ∇df = (n− 2)2f · du⊗ du+ (2− n)f · ∇du and the Laplace operators ∆ of
(M, g) and ∆ of (M, g) are related via ∆v = e−2u · (∆v − (n− 2)g(du, dv)) for any
function v, so that

ric = ric + 1
f
∇df − (n− 2)2du⊗ du+ (n− 2)du⊗ du+ (∆u)g

= ric + 1
f
∇df − (n− 2)(n− 3)du⊗ du+ (∆u)g .

As a consequence, f satisfies (1) if and only if ric = (∆u)g− (n− 2)(n− 3)du⊗ du
holds on M . Moreover,

f∆f + 2|df |2g = f ·
(
−(n− 2)2f |du|2g − (n− 2)f∆u

)
+ 2(n− 2)2f2|du|2g

= −(n− 2)f2 ·
(
∆u− (n− 2)|du|2g

)
= −(n− 2)f2 · e2u ·∆u

= −(n− 2)e2(2−n)u · e2u ·∆u

= −(n− 2)e2(3−n)u ·∆u ,

in particular (3) yields ∆u = − µ
n−2e

2(n−3)u. In dimension 3, we notice that ∆u = S
3 .

This shows statement 4.
If f vanishes nowhere, then again we may assume that f > 0 on M . Since M

is closed, f has a minimum and a maximum. At a point x where f attains its
maximum, we have µ = f(x)(∆f)(x) + 2|∇xf |2 = f(x)(∆f)(x) ≥ 0. In the same
way, µ = f(y)(∆f)(y) ≤ 0 at any point y where f attains its minimum. We deduce
that µ = 0 which, by integrating the identity f∆f + 2|∇f |2 = µ on M , yields
df = 0. This shows statement 5.
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The first part of statement 6. is the consequence of the following very general
fact [14, Prop. 1.2], that we state and reprove here for the sake of completeness: if
some smooth real-valued function f satisfies ∇2f = fq for some quadratic form q
on M , then the subset N0 = f−1 ({0}) is – if nonempty – a totally geodesic smooth
hypersurface of M . First, it is a smooth hypersurface because of dxf 6= 0 for all
x ∈ N0: namely if c : R → M is any geodesic with c(0) = x, then the function
y := f ◦ c satisfies the second order linear ODE y′′ = 〈∇2

ċf, ċ〉 = q(ċ, ċ) · y on R
with the initial condition y(0) = 0; if dxf = 0, then y′(0) = 0 and hence y = 0 on
R, which would imply that f = 0 on M by geodesic connectedness, contradiction.
To compute the shape operator W of N0 in M , we define ν := ∇f

|∇f | to be a unit
normal to N0. Then for all x ∈ N0 and X ∈ TxM ,

∇MX ν = X

(
1
|∇f |

)
· ∇f + 1

|∇f |
· ∇MX∇f

= −
X
(
|∇f |2

)
2|∇f |3 · ∇f + 1

|∇f |
· ∇MX∇f

= 1
|∇f |

·
(
∇2
Xf − 〈∇2

Xf, ν〉 · ν
)
,(9)

in particular Wx = −(∇ν)x = 0 because of
(
∇2f

)
x

= f(x)qx = 0. This shows that
N0 lies totally geodesically in M .

Now recall Gauß equations for Ricci curvature: for every X ∈ TN0,

RicN0(X) = Ric(X)T −RMX,νν + trg(W ) ·WX −W 2X,

where Ric(X)T = Ric(X) − ric(X, ν)ν is the component of the Ricci curvature
that is tangential to the hypersurface N0. As a straightforward consequence, if SN0

denotes the scalar curvature of N0,

SN0 = S − 2ric(ν, ν) + (trg(W ))2 − |W |2 .

Here, W = 0 and Ric(ν) = S
2 ν along N0 because N0 lies totally geodesically in M ,

so that
SN0 = S − 2ric(ν, ν) = S − S = 0 .

This proves N0 to be scalar-flat and statement 6.
As for claim 7., a straightforward consequence of (1) is that, at every x ∈ M

and for all X,Y ∈ TxM , we have

RX,Y∇f = [∇X ,∇Y ]∇f −∇2
[X,Y ]f

= −X(f)Ric(Y ) + Y (f)Ric(X)− f ((∇XRic)Y − (∇Y Ric)X) ,

which is identity (5). In particular, because 0 cannot be a critical value of f by
statement 6., the Ricci-tensor of (Mn, g) must be Codazzi at every critical point of
f . This proves claim 7.

Statement 8., which can be found in [14, Prop. 1.1], is a further consequence of
the general fact mentioned above that any f ∈W (Mn, g) is uniquely determined
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by its value as well as the value of its gradient at a given point. This implies that,
given any x ∈M , the linear map

W (Mn, g) −→ R× TxM

f 7−→ (f(x), (∇f)(x))

is injective, which proves claim 8. Note that the upper bound n+1 for dim(W (Mn, g))
is obviously attained when (Mn, g) = (Rn, can) is the flat Euclidean space.

Statement 9. can be considered as standard. In dimension 2, Ric = S
2 Id = KId,

where K is the Gauß curvature of (M2, g). But we also know that Ric(∇f) =
S
2∇f + f

4∇S = K∇f + f
2∇K. Comparing both identities and using the fact that

{f 6= 0} is dense in M leads to ∇K = 0, that is, M has constant Gauß curvature.
Up to rescaling the metric as well as f , we may assume that S, µ ∈ {−2, 0, 2}.
If M2 is complete with constant S > 0 (hence K = 1) and f is nonconstant,
then µ > 0 so that, by Obata’s solution to the equation ∇2f + f · IdTM = 0, the
manifold M must be isometric to the round sphere of radius 1 and the function f
must be a nonzero eigenfunction associated to the first positive eigenvalue of the
Laplace operator on S2, see [20, Theorem A]. If M2 is complete and has vanishing
curvature, then its universal cover is the flat R2 and the lift f̃ of f to R2 must be
an affine-linear function of the form f̃(x) = 〈a, x〉 + b for some nonzero a ∈ R2

and some b ∈ R; since the only possible nontrivial quotients of R2 on which f̃ may
descend are of the form R/Z · ǎ×R for some nonzero ǎ ∈ a⊥, the manifold M itself
must be either flat R2 or such a flat cylinder. If M2 is complete with constant
S < 0, then f satisfies the Tashiro equation ∇2f = f · IdTM . But then Y. Tashiro
proved that (M2, g) must be isometric to the hyperbolic plane of constant sectional
curvature −1, see e.g. [23, Theorem 2 p.252], see also [15, Theorem G]. Note that
the functions f listed above on S2, R2, S1 × R or H2 obviously satisfy (1).

If (Mn, g) is Einstein with n ≥ 3, then it has constant scalar curvature S and
Ric = S

n · Id. But again the identity Ric(∇f) = S
2∇f + f

4∇S = S
2∇f yields n = 2

unless S = 0 and thus M is Ricci-flat. Therefore, n = 2 is the only possibility for
non-Ricci-flat Einstein M . This shows statement 9.

If S is constant, then Ric(∇f) = S
2∇f . As a consequence,∇2

∇ff = −fRic(∇f) =
−Sf2 ∇f . But, as already observed in e.g. [22, Prop. 1], away from its vanishing
set, the gradient of f is a pointwise eigenvector of its Hessian if and only if the
vector field ν = ∇f

|∇f | is geodesic, see (9) above. Assuming furthermore (Mn, g)
to be complete, we can rescale as before f and g such that S, µ ∈ {−2, 0, 2}. In
case S > 0 and hence S = 2, necessarily µ > 0 holds and thus µ = 2. But then
f2 + |∇f |2 = 1, so that the only critical points of f are those where f2 = 1, which
by f2 ≤ 1 shows that the only critical points of f are those where f = ±1 and
hence where f takes a maximum or minimum value. Outside critical points of f ,
we may consider the function y := f ◦ γ : R→ R, where γ : R→M is a maximal
integral curve of the geodesic vector field ν. Then y satisfies y′ = |∇f | ◦ γ > 0 and
y(t)2 + y′(t)2 = 1, so that y′ =

√
1− y2 and therefore there exists some φ ∈ R

such that
y(t) = cos(t+ φ) ∀ t ∈ R .
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Since that function obviously changes sign and 0 is not a critical value of f , we
can already deduce that f changes sign, in particular N0 = f−1({0}) is nonempty.
Moreover, the explicit formula for y shows that f must have critical points, which
are precisely those where cos reaches its minimum or maximum value. This shows
statement 10a.

In case S = 0, we have Ric = 0 by (4) since f is assumed to be nonconstant.
This proves statement 10b.

In case S < 0 and thus S = −2, there are still three possibilities for µ:
• If µ > 0, then µ = 2 and (3) becomes −f2 + |∇f |2 = 1, hence f has no

critical point. If γ is any integral curve of the normalised gradient vector field
ν = ∇f

|∇f | , then the function y := f ◦γ satisfies the ODEs y′ =
√

1 + y2, therefore
y(t) = sinh(t + φ) for some real constant φ. In particular, f(M) = R and M
cannot be compact.

• If µ = 0, then (3) becomes f2 = |∇f |2. But since no point where f vanishes can
be a critical point by the fifth statement, f has no critical point and therefore
must be of constant sign. Up to turning f into −f , we may assume that f > 0
and thus f = |∇f |. Along any integral curve γ of ν = ∇f

|∇f | , the function y := f ◦γ
satisfies y′ = y and hence y(t) = C · et for some positive constant C. This shows
f(M) = (0,∞), in particular M cannot be compact.

• If µ < 0, then µ = −2 and (3) becomes −f2 + |∇f |2 = −1. As a consequence,
because of f2 = 1 + |∇f |2 ≥ 1, the function f has constant sign and hence we
may assume that f ≥ 1 up to changing f into −f . In particular, the only possible
critical value of f is 1, which is an absolute minimum of f . If γ is any integral
curve of the normalised gradient vector field ν = ∇f

|∇f | , which is defined at least
on the set of regular points of f , then the function y := f ◦ γ satisfies the ODEs
y′ =

√
y2 − 1, therefore y(t) = cosh(t+ φ) for some real constant φ. Since that

function has an absolute minimum, it must have a critical point. It remains to
notice that f(M) = [1,∞) and thus that M cannot be compact.

This shows statement 10c. �

Next we give a closer look at the case where the scalar curvature of (Mn, g) is
constant.

Theorem 2.2. Let (Mn, g) be any connected Riemannian manifold carrying a
nonzero smooth real-valued function f satisfying (1) on M . Assume the scalar
curvature S of (Mn, g) to be constant and nonvanishing. Up to rescaling the metric
g on M it may be assumed that S = 2ε for some ε ∈ {±1}.
Then the following holds.
1. Every regular level hypersurface Nc := f−1({c}) of f must have vanishing scalar

curvature and its Ricci-tensor be given by RicNc = − f
|∇f |2 (∇∇fRic).

2. If either n = 3 or both n ≥ 4 and Ric is assumed to be nonnegative when ε = 1
resp. nonpositive when ε = −1, then the Ricci-tensor has pointwise 2 eigenvalues,
ε with multiplicity 2 and 0 with multiplicity n− 2.
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3. If n = 3, the manifold (M3, g) must be isometric to either S2(ε)×R or S2(ε)×S1

with product Riemannian metric, where S2(ε) is the simply-connected complete
surface of constant curvature ε ∈ {±1}; and f must be the trivial extension to
M of a solution of the Obata resp. Tashiro equation on S2(1) = S2 (if ε = 1)
resp. S2(−1) = H2 (if ε = −1).

Proof. We look at the Gauß equations for Ricci and scalar curvature along each
Nc := f−1({c}) for any regular value c of f . Denoting W = −∇ν = f

|∇f |RicT =
f
|∇f |Ric the Weingarten-endomorphism-field ofNc inM , where RicT is the pointwise
orthogonal projection of Ric onto TNc, we have tr(W ) = f

|∇f | ·
S
2 by Ric(ν) = S

2 ν.
As a consequence, we have, for all X ∈ TNc:

Ric(X) = Ric(X)T

= RicNc(X) +W 2X − tr(W )WX +RX,νν

= RicNc(X) + f2

|∇f |2

(
Ric2(X)− S

2 Ric(X)
)

+RX,νν.

But we can compute the curvature term RX,νν explicitly from (5): for any X ∈ TNc,

RX,νν = −X(f)
|∇f |

Ric(ν) + ν(f)
|∇f |

Ric(X)− f

|∇f |
((∇XRic)ν − (∇νRic)X)

= Ric(X)− f

|∇f |

(
∇X(Ricν︸︷︷︸

S
2 ν

)− Ric(∇Xν)
)

+ f

|∇f |
(∇νRic)X

= Ric(X) + f

|∇f |

(
S

2 Id− Ric
)

(WX) + f

|∇f |
(∇νRic)X

= Ric(X) + f2

|∇f |2

(
S

2 Ric(X)− Ric2(X)
)

+ f

|∇f |
(∇νRic)X ,(10)

so that, with (∇νRic)(ν) = ∇ν(Ric(ν)) − Ric(∇νν) = ∇ν(S2 ν) = 0 on M , we
obtain

RicNc = − f

|∇f |
· ∇νRic ,

as claimed in statement 1. That identity has important consequences. First, choosing
a local o.n.b. (ej)1≤j≤n−1 of TNc,

SNc =
n−1∑
j=1
〈RicNc(ej), ej〉

= − f

|∇f |
·
n−1∑
j=1
〈(∇νRic)(ej), ej〉

= − f

|∇f |
· tr (∇νRic) ,
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because of (∇νRic)(ν) = 0, so that

SNc = − f

|∇f |
· tr(∇νRic) = − f

|∇f |
· ν(tr(Ric)) = − f

|∇f |
· ν(S) = 0 .

Therefore, each level hypersurface Nc is scalar-flat. This concludes the proof of
statement 1. We turn to 2. Because of S being constant, we already know by (2)
that, outside its vanishing set, the gradient vector field ∇f of f is a pointwise
eigenvector for the Ricci tensor associated to the eigenvalue S

2 = ε. Writing the Ricci
tensor as Ric = εν[⊗ν+RicT , where RicT is a pointwise symmetric endomorphism
of ν⊥ ⊂ TM , we deduce from (4) and the fact that {f 6= 0} is dense in M that

(11) |RicT |2 = S2

4 = 1

on {∇f 6= 0}. Since tr(RicT ) = S
2 = ε, identity (11) implies that, at every point

outside the critical set, the set of possible eigenvalues of RicT stands in one-to-one
correspondence with the sphere Sn−3 of dimension n− 3, seen as the unit sphere in
the (n−2)-dimensional space ν⊥. If n = 3, then this means that RicT has pointwise
the eigenvalues ε and 0, each of multiplicity one, on the regular set of f . If n ≥ 4,
we assume furthermore that Ric ≥ 0 when ε = 1 and Ric ≤ 0 when ε = −1. In that
case, (11) implies that RicT has exactly one eigenvalue that is equal to ε and that
all other eigenvalues vanish, at least on {∇f 6= 0}. To sum up, the Ricci tensor
of (Mn, g) has at each point of {∇f 6= 0} ⊂M the eigenvalues ε of multiplicity 2
and 0 of multiplicity n− 2 respectively. Note that both eigendistributions of the
Ricci-tensor are smooth since they have constant rank. Furthermore, the critical
set {∇f = 0} of f must have empty interior, otherwise the Ricci tensor would
vanish identically on that interior by (1) and the fact that 0 is not a critical value
of f . But this would contradict the fact that the scalar curvature S of (Mn, g) is
assumed to be constant and nonvanishing. Therefore, Ric has actually ε and 0 as
eigenvalues with multiplicities 2 and n− 2 respectively on all of M . This proves 2.

It remains to show that, when n = 3, both eigendistributions of the Ricci tensor
of (M3, g) are actually parallel. Let η be a unit eigenvector of Ric associated to
the eigenvalue ε and e3 be a unit eigenvector of Ric associated to the eigenvalue
0; since both Ric-eigenvalues are constant and distinct and Ric is smooth, η and
e3 exist globally along Nc, no need of analyticity. In dimension 3 again, because
SNc = 0 yields RicNc = 0 and thus ∇νRic = 0, the vector fields η and e3 can
actually be defined everywhere on the regular set of f using parallel transport along
ν-geodesics. Moreover, because the eigenvalue 0 of the Ricci-tensor has multiplicity
1 on all of M as we showed above, the vector field e3 can be defined globally on M .

We show that ∇e3 = 0, i.e. e3 is parallel on the dense open subset {∇f 6= 0}
and hence on M . First, because of ∇νRic = 0, ker(Ric) = Re3 and |e3| = 1, we
have ∇νe3 ∈ ker(Ric) ∩ e⊥3 = {0} i.e., ∇νe3 = 0. Next, following from the identity

0 = 1
2∇S = −δRic = (∇ηRic)η + (∇e3Ric)e3 + (∇νRic)︸ ︷︷ ︸

0

ν ,
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we have (∇ηRic)η = −(∇e3Ric)e3. Here we notice that
(∇ηRic)η = ε∇ηη − Ric(∇ηη) = ε(∇ηη − 〈∇ηη, ν〉ν)

and, with ∇e3ν = −We3 = f
|∇f |Ric(e3) = 0, that

(∇e3Ric)e3 = −Ric(∇e3e3) = −ε〈∇e3e3, η〉η .
Therefore,

0 = ε〈∇ηη, η〉

= 〈(∇ηRic)η, η〉

= −〈(∇e3Ric)e3, η〉

= ε〈∇e3e3, η〉 .

Since 〈∇e3e3, ν〉 = −〈e3,∇e3ν〉 = 0 and 〈∇e3e3, e3〉 = 0, it can be deduced that
∇e3e3 = 0.
Analogously,

0 = −ε〈∇e3e3, η〉〈η, e3〉

= 〈(∇e3Ric)e3, e3〉

= −〈(∇ηRic)η, e3〉

= −ε〈∇ηη, e3〉 ,

so that 〈∇ηe3, η〉 = 0. Again, because 〈∇ηe3, e3〉 = 0 = 〈∇ηe3, ν〉, it can be deduced
that ∇ηe3 = 0. To sum up, we obtain ∇e3 = 0 i.e., the vector field e3 is parallel
on M \ {∇f = 0} and hence on M . As a consequence, the holonomy group of M
splits locally, therefore the universal cover of M is isometric to the Riemannian
product Σ× R of some complete surface Σ with R. Moreover, using formula (10)
for X = η and taking into account that ∇νRic = 0, we obtain

Rη,νν =
(

1 + Sf2

2|∇f |2
)
· Ric(η)− f2

|∇f |2
· Ric2(η) = Ric(η) = εη ,

so that K(η, ν) = 〈Rη,νν, η〉 = ε|η|2 = ε. Therefore, the distribution Span(η, ν)→
M integrates to a surface of constant curvature ε ∈ {±1}. Thus Σ = S2(ε), which
is the simply-connected complete surface with curvature ε ∈ {±1}. In case ε = 1,
the lift f̃ of f to S2 × R is constant along the R-factor and satisfies the equation
(∇S2)2f = −f · Id, which is exactly the equation characterizing the eigenfunctions
associated to the first positive Laplace eigenvalue [20, Theorem A]. Furthermore,
the isometry group of S2 × R embeds into the product group of both isometry
groups of S2 and R and the first factor must be trivial since f̃ , as the restriction
of a linear form from R3 onto S2, is not invariant under {±Id}. Therefore, M is
isometric to either S2 ×R or to S2 × S1 and in both cases f is the trivial extension
of an eigenfunction associated to the first positive Laplace eigenvalue on S2. In
case ε = −1, the lift f̃ of f to H2 × R is constant along the R-factor and satisfies
the equation (∇H2)2f = f · Id, which is exactly the Tashiro equation. Since the
isometry group of H2 × R embeds into the product group of both isometry groups
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of H2 and R and the first factor must be trivial since f̃ has no nontrivial symmetry
[23, Theorem 2 p.252], we can deduce as above that M is isometric to either H2×R
or H2 × S1 and f is the trivial extension of a solution to the Tashiro equation on
H2. This proves statement 3 and concludes the proof of Theorem 2.2. �

Next we look at manifolds with harmonic curvature tensor. Recall that, by
definition, the Riemann curvature tensor R of (Mn, g) is harmonic if and only if
δR = 0 holds on M . By the first and second Bianchi identities, we have, for all
X,Y, Z ∈ TxM at some x ∈M :

(δR)(X,Y, Z) = (∇Y Ric)(Z,X)− (∇ZRic)(Y,X) .
As a consequence, δR = 0 at some x ∈M is equivalent to

(∇XRic)(Y )− (∇Y Ric)(X) = 0
for all X,Y ∈ TxM i.e., to Ric being a Codazzi-tensor at x. A 3-dimensional
Riemannian manifold has harmonic curvature if and only if it is conformally flat
and has constant scalar curvature. In dimension n ≥ 4, a Riemannian manifold
has harmonic curvature if and only if it has harmonic Weyl tensor W , that is,
δW = 0 holds on M , and constant scalar curvature. For instance, any conformally
flat manifold with constant scalar curvature has harmonic curvature tensor. We
refer to [2, Sec. 16.4] for more details about harmonic curvature.

Theorem 2.3. Let (Mn, g) be any connected complete Riemannian manifold
carrying a nonzero smooth real-valued function f satisfying (1) on M . If the
Riemann curvature tensor of (Mn, g) is harmonic, then either (Mn, g) is Ricci-flat
or, up to rescaling the metric g, the manifold (Mn, g) is isometric to the Riemannian
product S2(ε) × Σn−2, where S2(ε) is the simply-connected complete surface of
constant curvature ε ∈ {±1} and Σn−2 is a Ricci-flat manifold. Moreover, f is the
trivial extension to M of a solution of the Obata resp. Tashiro equation on S2 (if
ε = 1) resp. H2 (if ε = −1).

Proof. First recall that, if δR = 0 holds on M – or, equivalently, if Ric is a
Codazzi-tensor – then the scalar curvature S of (Mn, g) must be constant: given
any pointwise o.n.b. (ej)1≤j≤n of TM and X ∈ TM , we have

X(S) = X (tr(Ric))

= tr (∇XRic)

=
n∑
j=1

(∇XRic)(ej , ej)

=
n∑
j=1

(∇ejRic)(X, ej)

= −(δRic)(X)

= X(S)
2 ,
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so that necessarily dS = 0 holds on M . Since the scalar curvature S is assumed to
be non-identically vanishing, we may assume up to rescaling g that S = 2ε with
ε ∈ {±1}.

For any s ∈ N, we denote by (as) the assertion tr(Rics) = 2εs and by (bs)
the assertion δ(Rics) = 0. We show that, since the Ricci-tensor is assumed to be
Codazzi, both (as) and (bs) are true.

First, we have that, for every s, (bs) implies (as+1): namely, as a consequence of
Ric(∇f) = ε∇f (see (2)),

(∇XRics)(∇f) = −f(εsRicX − Rics+1X)
for every X ∈ TM . This yields, in a pointwise o.n.b. (ej)1≤j≤n of TM ,

δ(Rics)(∇f) = −
n∑
j=1

(∇ejRics)(ej ,∇f)

= f(εsS − tr(Rics+1))

= f(2εs+1 − tr(Rics+1)) .

Therefore, if δ(Rics) = 0, then tr(Rics+1) = 2εs+1. This shows the claim. Note that
here we have not used the property that Ric is a Codazzi-tensor.

Second, we have, under the condition that Ric is Codazzi, that (bs)⇒ (bs+1).
Namely assuming (bs), assertion (as+1) must hold true from the previous claim.
Therefore, for every X ∈ TM ,

n∑
j=1

(∇XRic)(ej ,Ricsej) = tr(∇XRic ◦ Rics) = 1
s+ 1X

((
tr
(
Rics+1))) = 0 .

Now using the fact that the Ricci-tensor is Codazzi, we compute

0 =
n∑
j=1

(∇XRic)(ej ,Ricsej)

=
n∑
j=1

(∇ejRic)(Ricsej , X)

=
n∑
j=1

((∇ejRics+1)(ei), X)− Ric(((∇ejRics)(ej), X)

= −(δRics+1)(X)

using again (bs). We deduce that (bs+1) is true.
Since (as) and (bs) are satisfied for s = 1, we deduce that they are satisfied for

all s ∈ N. From the Newton identities, it can be deduced that the Ricci tensor must
have pointwise the eigenvalues ε and 0, the former of multiplicity 2 and the latter
of multiplicity n − 2. Therefore, we get the pointwise orthogonal decomposition
TM = ker(Ric− εId)⊕ ker(Ric).

It remains to show that both eigendistributions of the Ricci-tensor are parallel.
Let X,Y ∈ ker(Ric − εId) and Z ∈ ker(Ric). Then the scalar product with Y in
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the formula (∇XRic)Z = (∇ZRic)X allows to get on the one hand

g((∇XRic)Z, Y ) = −g(Ric(∇XZ), Y ) = −εg(∇XZ, Y ) ,

and on the other hand

g((∇ZRic)X,Y ) = εg(∇ZX,Y )− g(Ric(∇ZX), Y )

= εg(∇ZX,Y )− g(∇ZX,RicY )

= 0 .

Thus, we deduce that 0 = g(∇XZ, Y ) = −g(∇XY, Z). Hence ∇XY ∈ ker(Ric−εId)
and therefore the distribution ker(Ric− εId) is parallel. The same computations
can be done for the distribution ker(Ric). This straightforwardly implies that
both eigendistributions ker(Ric − εId) and ker(Ric) are parallel and therefore
integrable and totally geodesic. By the de Rham theorem, M splits locally as
the Riemannian product of a surface and an n − 2-dimensional submanifold.
Moreover, the Ricci-curvature – which is the Gauß-curvature – of the surface that is
pointwise tangent to the distribution ker(Ric− εId) is ε and the submanifold that
is pointwise tangent to ker(Ric) is Ricci-flat, see e.g. [2, Thm. 1.100]. Therefore
the universal cover of M is isometric to the Riemannian product S2(ε) × Σ̃ of
the simply-connected complete surface with curvature ε ∈ {−1, 0, 1} with some
simply-connected Ricci-flat manifold Σ̃. The rest of the proof is analogous to that
of Theorem 2.2.3. This concludes the proof of Theorem 2.3. �

3. Examples in warped product form

We look for examples of warped products (M, g) := (M1 ×M2, g1 ⊕ ϕ2g2) for
some smooth positive function ϕ on M1, where (M1, g1) and (M2, g2) are connected
Riemannian manifolds. We make the ansatz f(x1, x2) := f1(x1)f2(x2) for all
(x1, x2) ∈ M where f1 and f2 are smooth real-valued functions on M1 and M2
respectively. We look for necessary and sufficient conditions for f to satisfy (1) on
(M, g).

Proposition 3.1. Let (Mn, g) := (Mn1
1 ×Mn2

2 , g1 ⊕ ϕ2g2) be a connected Rie-
mannian warped product, where ϕ ∈ C∞(M1,R×+). For any two functions fi ∈
C∞(Mi,R), i = 1, 2, let f := π∗1f1 · π∗2f2 i.e., f(x1, x2) = f1(x1)f2(x2) for all
(x1, x2) ∈ M . Then f solves ∇2f = −f · Ric on (M, g) if and only if one of the
following occurs:
(a) The function f1

ϕ is constant on M1, in which case it can be assumed up to re-
scaling f that f1 = ϕ. Then µ1(f1) := (n2− 2)|∇M1f1|21− f1∆M1f1 is constant
on M1 and f1, f2 solve

(n2 − 1)(∇M1)2f1 = f1 · RicM1(12)

(∇M2)2f2 = f2 · (µ1(f1)IdTM2 − RicM2)(13)

respectively.
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(b) The function f2 is constant on M2, in which case f1 solves

(14) (∇M1)2f1 = −f1 ·
(

RicM1 −
n2

ϕ
(∇M1)2ϕ

)
on M1, the function − ϕ

f1
g1(∇M1f1,∇M1ϕ) + (n2 − 1)|∇M1ϕ|21 − ϕ∆M1ϕ is

constant on each connected component of M1 \ f−1
1 ({0}) and the manifold

(M2, g2) is Einstein with scalar curvature equal to

n2

(
− ϕ

f1
g1(∇M1f1,∇M1ϕ) + (n2 − 1)|∇M1ϕ|21 − ϕ∆M1ϕ

)
.

Proof. First, we have ∇f = f2∇f1 +f1∇f2 = f2∇M1f1 + f1
ϕ2∇M2f2, where ∇Mifi

denotes the gi-gradient of fi on (Mi, gi). Recall Koszul’s formula, valid for any
tangent vector fields X,Y, Z on some Riemannian manifold (M, g):

g(∇XY,Z) = 1
2

{
X(g(Y,Z)) + Y (g(Z,X))− Z(g(X,Y ))

+ g([X,Y ], Z)− g([Y,Z], X) + g([Z,X], Y )
}
.(15)

It can be deduced from (15) that, for any Xi, Yi, Zi ∈ Γ(π∗i TMi), we have

∇X1Y1 = ∇M1
X1
Y1(16)

∇X1Y2 = ∂X1Y2 + X1(ϕ)
ϕ

Y2(17)

∇X2Y1 = ∂X2Y1 + Y1(ϕ)
ϕ

X2(18)

∇X2Y2 = ∇M2
X2
Y2 −

1
ϕ
g(X2, Y2)∇M1ϕ .(19)

As a first consequence,

∇2
X1
f = f2∇X1∇M1f1 + X1(f1)ϕ2 − 2f1X1(ϕ)ϕ

ϕ4 ∇M2f2 + f1

ϕ2∇X1∇M2f2

= f2(∇M1)2
X1
f1 + X1(f1)ϕ− 2f1X1(ϕ)

ϕ3 ∇M2f2

+ f1

ϕ2

∂X1∇M2f2︸ ︷︷ ︸
0

+X1(ϕ)
ϕ
∇M2f2


= f2(∇M1)2

X1
f1 + X1(f1)ϕ− f1X1(ϕ)

ϕ3 ∇M2f2

= f2(∇M1)2
X1
f1 + 1

ϕ
X1(f1

ϕ
)∇M2f2 .(20)
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Similarly,

∇2
X2
f = X2(f2)∇M1f1 + f2∇X2∇M1f1 + f1

ϕ2∇X2∇M2f2

= X2(f2)∇M1f1 + f2

(
∂X2∇M1f1︸ ︷︷ ︸

0

+g1(∇M1f1,∇M1ϕ)
ϕ

X2

)
+ f1

ϕ2

(
(∇M2)2

X2
f2 −

1
ϕ
g(X2,∇M2f2)∇M1ϕ

)
= f1

ϕ2 (∇M2)2
X2
f2 +X2(f2)

(
∇M1f1 −

f1

ϕ
∇M1ϕ

)
+ f2

ϕ
g1(∇M1f1,∇M1ϕ)X2

= f1

ϕ2 (∇M2)2
X2
f2 +X2(f2)ϕ∇M1

(f1

ϕ

)
+ f2

ϕ
g1(∇M1f1,∇M1ϕ)X2 .(21)

Independently, by [2, Prop. 9.106], we have

Ric(X1) = RicM1(X1)− n2

ϕ
(∇M1)2

X1
ϕ(22)

Ric(X2) = 1
ϕ2 RicM2(X2) +

(∆M1ϕ

ϕ
− (n2 − 1) |∇

M1ϕ|21
ϕ2

)
X2 .(23)

Therefore, f satisfies (1) on (M, g) if and only if the following system of equations
holds, for all (X1, X2) ∈ TM :{

l1(X1) = r1(X1)
l2(X2) = r2(X2)

,

where

l1(X1) = f2(∇M1)2
X1
f1 + 1

ϕ
X1

(f1

ϕ

)
∇M2f2

r1(X1) = −f1f2 ·
(

RicM1(X1)− n2

ϕ
(∇M1)2

X1
ϕ
)

l2(X2) = f1

ϕ2 (∇M2)2
X2
f2 +X2(f2)ϕ∇M1

(f1

ϕ

)
+ f2

ϕ
g1(∇M1f1,∇M1ϕ)X2

r2(X2) = −f1f2 ·
( 1
ϕ2 RicM2(X2) +

(∆M1ϕ

ϕ
− (n2 − 1) |∇

M1ϕ|21
ϕ2

)
X2

)
.

Both equations imply that d
(
f1
ϕ

)
⊗ df2 = 0, that is, that f1

ϕ is constant on M1 or
f2 is constant on M2.
Case f1

ϕ is constant on M1: We may assume, up to rescaling f2 and hence f ,
that f1 = ϕ holds on M1. The above system of equations becomes equivalent to
the following: (∇M1)2

X1
f1 = −f1 ·

(
RicM1(X1)− n2

f1
(∇M1)2

X1
f1

)
1
f1

(∇M2)2
X2
f2 + f2|∇M1f1|21

f1
X2 = −f1f2 · T2(X2)

,
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where T2(X2) :=
(

1
f2

1
RicM2(X2) +

(
∆M1f1
f1
− (n2 − 1) |∇

M1f1|21
f2

1

)
X2

)
. Thus{

(1− n2)(∇M1)2f1 = −f1 · RicM1

(∇M2)2f2 = −f2 · RicM2 + f2
(
(n2 − 2)|∇M1f1|21 − f1∆M1f1

)
IdTM2

.

Since f2 is assumed to be non-identically vanishing and the second identity above
only depends on M2, the factor µ1(f1) := (n2 − 2)|∇M1f1|21 − f1∆M1f1 must be
constant on M1. Actually we shall see later that, when n2 ≥ 2, this already follows
from the equation for f1.
Therefore, in case f1 = ϕ, equation (1) for f := π∗1f1 · π∗2f2 is equivalent to the
function (n2 − 2)|∇M1f1|21 − f1∆M1f1 = µ1(f1) begin constant on M1 and{

(n2 − 1)(∇M1)2f1 = f1 · RicM1

(∇M2)2f2 = f2 · (µ1(f1)IdTM2 − RicM2)
.

Case f2 is constant on M2: Then ∇2f = −f ·Ric on (M, g) is equivalent to the
system (∇M1)2f1 = −f1 ·

(
RicM1 − n2

ϕ (∇M1)2ϕ
)

g1(∇M1f1,∇M1ϕ)
ϕ IdTM2 = −f1 ·

(
1
ϕ2 RicM2 + (∆M1ϕ

ϕ − (n2−1) |∇
M1ϕ|21
ϕ2 )IdTM2

) ,

that is, assuming f1 not to vanish identically on M1, (∇M1)2f1 = −f1 ·
(

RicM1 − n2
ϕ (∇M1)2ϕ

)
RicM2 =

(
− ϕ
f1
g1(∇M1f1,∇M1ϕ) + (n2− 1)|∇M1ϕ|21 − ϕ∆M1ϕ

)
· IdTM2

,

the second equation holding on the dense open subset M1 \ f−1({0}). The second
of both above identities implies that the quantity

µ′1 :=
(
− ϕ
f1
g1(∇M1f1,∇M1ϕ) + (n2 − 1)|∇M1ϕ|21 − ϕ∆M1ϕ

)
is constant on M1 and that M2 is Einstein with constant scalar curvature equal to
n2µ

′
1, whatever n2 is. This concludes the proof of Proposition 3.1. �

Now we look at (1) on Riemannian products, where f is not assumed to be in
product form.

Theorem 3.2. Let (Mn, g) = (M1×M2, g1⊕ g2) for some connected Riemannian
manifolds (M1, g1) and (M2, g2). Assume M to be non Ricci-flat i.e., that RicM1 6= 0
or RicM2 6= 0. W.l.o.g. let RicM2 6= 0. Then a function f ∈ C∞(M,R)\{0} satisfies
(1) on (Mn, g) if and only if RicM1 = 0, the function f only depends on M2 and
satisfies (1) on (M2, g2). As a consequence, the map W (M2, g2) −→ W (M, g)
extending a function trivially on the M1-factor, is an isomorphism.

Proof. First, we split pointwise ∇f = ∇M1f+∇M2f according to the g-orthogonal
splitting T(x1,x2)M = Tx1M1 ⊕ Tx2M2, for all (x1, x2) ∈M . Using formulae (16) –
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(19) and ϕ = 1, it can be deduced that, for all X1 ∈ TM1,

∇2
X1
f = ∇X1(∇M1f) +∇X1(∇M2f)

= ∇M1
X1

(∇M1f) + ∂X1(∇M2f)

and similarly, for all X2 ∈ TM2,

∇2
X2
f = ∇X2(∇M1f) +∇X2(∇M2f)

= ∂X2(∇M1f) +∇M2
X2

(∇M2f) .

By (22) and (23), we obtain that f satisfies (1) on (Mn, g) if and only if, for all
(X1, X2) ∈ TM1 ⊕ TM2,

∇M1
X1

(∇M1f) + ∂X1(∇M2f) = −fRicM1(X1)(24)

∂X2(∇M1f) +∇M2
X2

(∇M2f) = −fRicM2(X2) .(25)

It can be deduced that both ∂X1(∇M2f) = 0 and ∂X2(∇M1f) = 0, for all (X1, X2) ∈
TM1 ⊕ TM2. But the first identity is equivalent to the existence of functions
a1 ∈ C∞(M1,R) and a2 ∈ C∞(M2,R) such that f(x1, x2) = a1(x1) + a2(x2) for
all (x1, x2) ∈M . Then the second identity is trivial and (25) is equivalent to

(∇M2)2a2|x2
= −(a1(x1) + a2(x2))RicM2 |x2

for all (x1, x2) ∈ M1 ×M2. But since the l.h.s. of the preceding inequality does
not depend on M1 and because of RicM2 6= 0, this implies a1 is constant on M1,
therefore a1 + a2 ∈ C∞(M2,R) satisfies (1) on (M2, g2). But then (24) together
with the assumption f 6= 0 forces RicM1 = 0: choose a point x2 ∈ M2 where
f(x2) 6= 0. This concludes the proof. �

Next we look for examples and partial classifications results for identities (12)
and (13), which correspond to the case f1 = ϕ. An obvious case is when f1 = ϕ are
constant (and nonvanishing) on M1. Then (M1, g1) must be Ricci-flat, f(x1, x2) =
f2(x2) for all (x1, x2) ∈ M and, because of µ1(f1) = 0 then, the function f2
must satisfy (1) on (M2, g2). This is actually a consequence of Theorem 3.2 above.
Therefore we obtain an already known example in that case, see introduction.

Proposition 3.3. Let (Mn, g) be any connected Riemannian manifold.

1. Assume there exists an f ∈ C∞(M,R×+) solving ∇2f = f
m−1 · Ric on M for

some integer m ≥ 2. Then µ1(f) := (m− 2)|∇f |2 + f2S
m−1 = (m− 2)|∇f |2− f∆f

is constant on M and, if m > 2, then Ric(∇f) = − 1
(m−2)(m−1)∇(f2S), where

S is the scalar curvature of (M, g). Moreover, if m > 2, then f defines a
(0, n+m− 1)-Einstein metric on (M, g).

2. Assume there exists an f ∈ C∞(M,R×+) solving ∇2f = f · (µId − Ric) on M

for some µ ∈ R. Then Ric(∇f) = − (n−1)µ
2 ∇f + f

4∇S + S
2∇f and µ2(f) :=

2|∇f |2 + f2(S − (n+ 1)µ) = 2|∇f |2 + f∆f − µf2 is constant on M .
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3. In case (Mn, g) = (Mn1
1 ×Mn2

2 , g1 ⊕ f2
1 g2) for some f1 ∈ C∞(M1,R×+) and

f := π∗1f1 · π∗2f2 for some f2 ∈ C∞(M2,R), there are, for each n1, n2 ≥ 1
examples of (Mi, gi, fi) for which f solves (1).

4. If (Mn, g) is closed and f ∈ C∞(M,R×+) is such that µ1(f) := k|∇f |2 − f∆f
is constant for some k ∈ R, then f must be constant on M and therefore µ1(f)
must vanish. As a consequence, if there exists a nonzero f ∈ C∞(M,R×+) solving
∇2f = f

m−1 · Ric on some closed M and for some integer m ≥ 2, then f must
be constant and therefore M must be Ricci-flat.

Proof. We first look at equation

(26) ∇2f = f

m− 1 · Ric

on M , for some integer m ≥ 2. We first derive a few identities following from (26),
see e.g. [18, Lemma 4]. We write down the proof for the sake of completeness.
Namely, by (6), we know that

δ
(
∇2f

)
= ∆(∇f)− Ric(∇f)
= ∇(∆f)− Ric(∇f)

= − 1
m− 1∇(fS)− Ric(∇f)

= − 1
m− 1 (S∇f + f∇S)− Ric(∇f) ,

where, as above, S := tr(Ric) is the scalar curvature of (M, g) and where we have
used ∆f = − fS

m−1 tracing (26). But (26) also yields

δ
(
∇2f

)
= 1
m− 1 (−Ric(∇f) + fδ(Ric))

= 1
m− 1

(
− Ric(∇f)− f

2∇S
)
,

so that, bringing both identities for δ
(
∇2f

)
together, we deduce that

m− 2
m− 1 · Ric(∇f) = − 1

m− 1

(
S∇f + f

2∇S
)

= − 1
2(m− 1)f · ∇(f2S) .(27)

In case m = 2, we deduce that ∇(f2S) = 0 i.e., that f2S = −f∆f is constant on
M . In case m > 2, we deduce that

(28) Ric(∇f) = − 1
2(m− 2)f · ∇(f2S) .
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Still when m > 2, it follows that

∇
(
|∇f |2

)
= 2(∇)2

∇ff

= 2f
m− 1Ric(∇f)

(28)= − 1
(m− 2)(m− 1) · ∇(f2S).

Therefore, µ1(f) := (m − 2)|∇f |2 + 1
m−1f

2S = (m − 2)|∇f |2 − f∆f is constant
on M . Note that this is also the case when m = 2 by the above remark. Note
also that, when m > 2, identity (26) defines a so-called (0, n + m − 1)-Einstein
metric on (M, g) according to [14, 12]. By [5, Theorem 2.2], the existence of such a
positive f is equivalent to the warped product (M × F, g ⊕ f2gF ) being Ricci-flat,
where (F, gF ) is an Einstein manifold of dimension m− 1 and with RicF = µ1 · Id,
the constant µ1 being given by µ1 = (m− 2)|∇f |2 − f∆f = (m− 2)|∇f |2 + f2S

m−1 ,
which is exactly the constant µ1(f) described above, see also [18, Cor. 3]. This
statement remains true when m = 2 and ∆f = 0 (or equivalently µ1(f) = 0). This
shows statement 1.

Next we look at

(29) ∇2f = f · (µId− Ric)

on Mn for some µ ∈ R and n ≥ 2. First and as before, a few identities can be
deduced from (29). Namely, by (6), we know that

δ
(
∇2f

)
= ∆(∇f)− Ric(∇f)

= ∇(∆f)− Ric(∇f)

= ∇(f(S − nµ))− Ric(∇f)

= (S − nµ)∇f + f∇S − Ric(∇f) ,

where we have used ∆f = f(S − nµ) tracing (29). But (29) also yields

δ
(
∇2f

)
= −(µ∇f − Ric(∇f)) + fδ (µId− Ric)

= −µ∇f + Ric(∇f) + f

2∇S

so that, bringing both identities for δ
(
∇2f

)
together, we deduce that

(30) Ric(∇f) = −n− 1
2 µ∇f + f

4∇S + S

2∇f .
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It follows that

∇
(
|∇f |2

)
= 2∇2

∇ff

= 2f(µ∇f − Ric(∇f))
(30)= f

(
(n+ 1)µ∇f − f

2∇S − S∇f
)

= n+ 1
2 µ∇(f2)− 1

2∇(f2S)

= 1
2∇

(
(n+ 1)µf2 − f2S

)
.

Therefore, µ2(f) := 2|∇f |2 + f2(S − (n+ 1)µ) = 2|∇f |2 + f∆f − µf2 is constant
on M . This proves statement 2.

As for statement 3, we look at different cases according to the values of n2 and
n1.
Case n2 = 1: Then (12) is equivalent to M1 being Ricci-flat. Together with
f1∆M1f1 + |∇M1f1|21 = −µ1(f1) being constant by Proposition 3.1, identity (13) is
equivalent to f ′′2 = µ1(f1)f2. Whatever the sign of µ1(f1), there exists a solution
f2 to that second-order linear ordinary differential equation on R, which is periodic
(and hence can be pulled down on a circle of suitable radius) if and only if µ1(f1) < 0.
As for f1, a trivial family of examples in each dimension n1 may be produced as
follows. When n1 = 1, the function f1 solves the ordinary differential equation
−f1f

′′
1 + (f ′1)2 = −µ1(f1), whose general solution is

f1(t) =


a1(t) if µ1(f1) > 0
b1(t) if µ1(f1) = 0
c1(t), d1(t), e1(t) if µ1(f1) < 0

where

a1(t) := A cosh(A−1
√
µ1(f1)t+ φ)

b1(t) := Aeφt

c1(t) := A cos(A−1
√
−µ1(f1)t+ φ)

d1(t) := ±
√
−µ1(f1)t+ φ

e1(t) := A sinh(A−1
√
−µ1(f1)t+ φ)

for real arbitrary constants A, φ with w.l.o.g. A > 0 (remember that f1 = ϕ > 0 by
assumption). Note that all solutions are defined on R but that, in case µ1(f1) < 0,
the function f1 must change sign somewhere, which makes the solution f1 only
local then. Moreover, in case µ1(f1) ≥ 0, the solution f1 – though positive on R –
is not periodic and therefore cannot be pulled down on an S1. Obviously, each of
the above f1’s can be trivially extended constantly in the other variables on Rn1

for every n1 ≥ 1.
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It is important to note that, in the cases where f1 > 0 on R, corresponding to
µ1(f1) ≥ 0 as we have seen above, the induced metric ds2 ⊕ f1(s)2dt2 on R2 is the
hyperbolic one, for which we can anyway describe W (M, g) explicitly.
Case n2 > 1: When n2 ≥ 2 and n1 = 1, equation (12) reduces to f ′′1 = 0 on M1,
which has no positive solution on M1 unless f1 is constant or M1 is a strict open
subinterval of R.
When n2 ≥ 2 and n1 = 2, equation (12) is equivalent to (∇M1)2f1 = f1φ1 · IdTM1 ,
where φ1 := S1

2(n2−1) . But by [23, Sec. 2], this implies that, on any open subset
where f1 has no critical point, (M2

1 , g1) is locally isometric to (R2, dt2 ⊕ ρ(t)2ds2),
where ρ := u′

u′(0) and u is f1 along the flow of its normalised gradient ν := ∇M1f1
|∇M1f1|1 .

Moreover, along any integral curve γ of ν, which is a geodesic of (M1, g1) because of
∇M1f1 being a pointwise eigenvector of (∇M1)2f1, the function u must satisfy the
following second-order ordinary differential equation: for any t in some nonempty
open interval,

u′′(t) = g1((∇M1)2
γ̇(t)f1, γ̇(t))

= (f1S1) ◦ γ(t)
2(n2 − 1)

=
(µ1(f1)

2f1
− n2 − 2

2 · |∇
M1f1|21
f1

)
◦ γ(t)

= −n2 − 2
2u(t) u

′(t)2 + µ1(f1)
2u(t) ,

that is,

(31) u′′ · u+ n2 − 2
2 (u′)2 = µ1(f1)

2 .

In the first special case where µ1(f1) = 0, the general form of the solution u to
(31) is u(t) = (at+ b)

2
n2 for real constants a, b with a 6= 0; assuming a and b to be

positive, the maximal existence interval for u is [− b
a ,∞), in particular no complete

M1 can exist unless f1 has critical points.
In the second special case where n2 = 2, the second-order ordinary differential

equation (31) may be reduced to the first-order one

u′ =
√
µ1(f1) ln(u) + C

for some real constant C. Note that this implies that u is constant when n2 = 2
and µ1(f1) = 0. If µ1(f1) > 0, the maximal existence interval for u is of the form
]a,∞[, whereas if µ1(f1) < 0, that interval is of the form ]−∞, a[ for some real a.

Conversely, let us assume u to be any positive solution with w.l.o.g. positive
first derivative of (31) on some open interval I about 0. Consider the warped
product (M1, g1) := (I × Σ, dt2 ⊕ ϕ(t)2ds2) for Σ = R or S1, where ϕ(t) := u′(t)

u′(0) .
Let f(t, s) := u(t) for all (t, s) ∈ M1. The above formulae (20) and (21) for the
Hessian of f simplify to ∇2

∂t
f = u′′ · ∂t and ∇2

∂s
f = u′ϕ′

ϕ · ∂s. The identities (22)
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and (23) become Ric = −ϕ
′′

ϕ · IdTM . Taking into account that ϕ = u′

u′(0) , we have
u′ϕ′

ϕ = u′′, so that ∇2f = u′′ · IdTM , as well as Ric = − u(3)

(n2−1)u′ · IdTM (recall that
n2 = 2 here). Therefore, ∇2f = f

n2−1 · Ric if and only if u′′ = − uu(3)

(n2−1)u′ on I. But
because u′′ = µ1(f1)

2u − n2−2
2u (u′)2, we have

− uu(3)

(n2 − 1)u′ = − u

(n2 − 1)u′ ·
(µ1(f1)

2u − n2 − 2
2 · (u′)2

u

)′
= − u

(n2 − 1)u′ ·
(
− µ1(f1)u′

2u2 − n2 − 2
2 · 2u′u′′u− (u′)3

u2

)

= 1
n2 − 1 ·

(µ1(f1)
2u + n2 − 2

2 · 2u′′u− (u′)2

u

)
= 1
n2 − 1 ·

(µ1(f1)
2u + n2 − 2

2 · µ1(f1)− (n2 − 2)(u′)2 − (u′)2

u

)
= 1
n2 − 1 ·

( (n2 − 1)µ1(f1)
2u − (n2 − 2)(n2 − 1)(u′)2

2u

)
= u′′,

so that (26) is satisfied on (M2
1 , g1).

In the subcase where n2 = 2, equation (13) is equivalent to (∇M2)2f2 = f2φ2 ·
IdTM2 , where φ2 := µ1− S2

2 . Now (30) yields S2
2 ∇

M2f2 = S2−µ1
2 ∇M2f2 + f2

4 ∇
M2S2,

that is, f2∇M2S2 = 2µ1∇M2f2, which is equivalent to the existence of a real constant
C such that

S2 = 2µ1 ln(|f2|) + C

on each connected component of the dense open subset M2 \ f−1
2 ({0}). Denoting

µ2 := µ2(f2), it can be deduced that

|∇M2f2|2 = µ2

2 −
f2

2 (S2 − 3µ1)
2

= µ2

2 −
f2

2 (2µ1 ln(|f2|) + C − 3µ1)
2

= µ2

2 +
(

3µ1 − C
2 − µ1 ln(|f2|)

)
f2

2 .

This gives rise to a first-order ordinary differential equation for u(t) := f2◦F νt , where
(F νt )t is the local flow of ν := ∇M2f2

|∇M2f2|2 on some open subset of the regular set of f2.
Namely, [23, Sec. 2] again implies that, on any open subset where f2 has no critical
point and vanishes nowhere, (M2

2 , g2) is locally isometric to (R2, dt2 ⊕ ρ(t)2ds2),
where ρ := u′

u′(0) . Moreover, along any integral curve γ of ν, which is a geodesic of
(M2, g2) because of ∇M2f2 being a pointwise eigenvector of (∇M2)2f2, the function
u must satisfy the following first-order ordinary differential equation: for any t in
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some nonempty open interval,

(32) u′ =
(
µ2

2 +
(3µ1 − C

2 − µ1 ln(|u|)
)
u2
) 1

2

.

Except in possibly very particular cases – e.g. when µ1 = µ2 = C = 0, in which u
is constant – the maximal existence time for such a solution u to (32) is strictly
contained in R. Note also that, if u solves (32), then

u′′ = 1
2

(
µ2

2 +
(3µ1− C

2 − µ1 ln(|u|)
)
u2
)− 1

2

·
(
(3µ1−C− 2µ1 ln(|u|))uu′−µ1u

′u
)

=
(
µ2

2 +
(3µ1 − C

2 − µ1 ln(|u|)
)
u2
)− 1

2

·
(
µ1 −

C

2 − µ1 ln(|u|)
)
uu′

= (u′)−1 ·
(
µ1 −

C

2 − µ1 ln(|u|)
)
uu′

=
(
µ1 −

C

2 − µ1 ln(|u|)
)
u ,

where µ1 − C
2 − µ1 ln(|u|) = µ1 − S2◦γ

2 by the above identity for S2.
This implies that, given any nowhere vanishing solution u to (32) on some open
interval I about 0, the function f(t, s) := u(t) solves

∇2f = u′′ · IdTM =
(
µ1 −

S

2

)
· IdTM

on (M2
2 , g2) := (I × Σ, dt2 ⊕ ( u

′(t)
u′(0) )2ds2), where Σ = R or S1.

Still in the case where n2 = 2, equation (26) has not been considered yet in
the literature as far as we know. In the special subcase where µ1 = 0, which is
equivalent to S1 = 0, equation (26) can be rewritten under the form (∇M1)2f1 =
f1 · RicM1 − (∆M1f1) · Id, which is the general form of an element of ker(L∗g1

) in
[6] when the underlying manifold is scalar-flat. In case ker(L∗g1

) 6= {0}, the metric
g1 is called static. Although it is unclear whether a nonconstant positive solution
f1 to that equation can exist on a complete M1, there is a noncomplete example:
take the outer Schwarzschild manifold (R3 \Bm

2
, (1 + m

2r )4〈· , ·〉) for some constant
m > 0, where r = r(x) = |x| in R3 and f1(x) = 1−m2r

1+m
2r

, see [6, p.145]. In case
M1 is either closed, complete with nonnegative Ricci curvature or with so-called
moderate volume growth, the function f1 must be constant. The latter two are due
to S.T. Yau [24, Cor. 1 p. 217] and to L. Karp [16, Theorem B] (see also [17, Sec.
3]) respectively, using only the harmonicity of f1. As a consequence, if n1 = 2 (and
n2 = 2), then there is no nonconstant solution f1 (for S1 = 0 implies RicM1 = 0).
Case n2 > 2 and n1 > 2: Then (26) defines a so-called (0, n1 + n2 − 1)-Einstein
metric on (M1, g1) according to [14, 12] as we noticed in statement 1. As for (13),
it has not been considered either in the literature when µ1 6= 0 – for µ1 = 0, it is
already (1) on M2. When µ1 6= 0, we may take for (Mn2

2 , g2, f2) the standard solu-
tion to the Obata resp. Tashiro equation on the n2-dimensional simply-connected
spaceform of sectional curvature µ1(f1)

n2−2 , which are the only Einstein solutions to
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(13) when n2 > 2. This shows statement 3.

In the particular case where (Mn, g) is closed and f ∈ C∞(M,R×+) is such that
µ1(f) := k|∇f |2 − f∆f is constant for some k ∈ R, we can mimic the proof of
Lemma 2.1.5. First, we have µ1(f) = 0: it suffices to evaluate µ1(f) at two points,
one where min

M
(f) is attained and one where max

M
(f) is attained to obtain that

µ1(f) must be both nonpositive and nonnegative because of f > 0 and the opposite
signs of the Laplace operator of f at a minimum and maximum respectively.
Independently, we can integrate µ1(f) over M and obtain

µ1(f) ·Vol(Mn, g) = (k − 1) ·
∫
M

|∇f |2 dµg .

Therefore, if k 6= 1, then f must be constant. If k = 1, the vanishing of µ1(f) is
equivalent to ∆f = |∇f |2

f ≥ 0 on the closed manifold M , which with
∫
M

∆f dµg = 0
shows that, again, ∇f = 0 must hold on M , therefore f must also be constant on
M . This proves statement 4 and concludes the proof of Proposition 3.3. �

In case the factor (M1, g1) of the warped product is complete, we show that
actually the map f must be constant along M1.

Theorem 3.4. Let f = π∗1f1 · π∗2f2 satisfy (1) on (Mn, g) = (M1 ×M2, g1 ⊕ f2
1 g2)

for some smooth positive function f1 on M1 and smooth function f2 on M2. Assume
(M1, g1) to be complete and connected.
Then f1 must be constant on M1, the manifold (M1, g1) must be Ricci-flat and f2
must satisfy (1) on (M2, g2). Therefore, the map W (M2, g2) −→W (M, g) extending
any solution (1) to M is an isomorphism.

Proof. In case f1 > 0 on M1 and for f = π∗1f1 ·π∗2f2 on M1×f2
1
M2, the constants

µ(f), µ1(f1) and µ2(f2) defined above are related as follows:

µ(f) = f∆f + 2|∇f |2

= f1f2((∆f1)f2 + f1∆f2) + 2|f2(∇f1) + f1∇f2|2

= f1f2((∆M1f1)f2 + f1

f2
1

∆M2f2) + 2|f2(∇M1f1) + f1

f2
1
∇M2f2|2

= f1(∆M1f1)f2
2 + f2(∆M2f2) + 2f2

2 |∇M1f1|21 + 2|∇M2f2|22
=
(
f1(∆M1f1) + 2|∇M1f1|21

)
· f2

2 + f2∆M2f2 + 2|∇M2f2|22

=
(
f1(∆M1f1) + 2|∇M1f1|21 + µ1(f1)

)
· f2

2

+ f2∆M2f2 + 2|∇M2f2|22 − µ1(f1)f2
2

= n2|∇M1f1|21f2
2 + µ2(f2) .

This implies that, if f 6= 0 solves (1) and ϕ = f1 > 0, then |∇M1f1|1 is constant
on M1. Note that this holds whether (M1, g1) is complete or not, i.e. whenever
M1 is connected. From now on assume (M1, g1) to be complete. By contradiction,
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if |∇M1f1|1 were a positive constant, then f1 would have no critical point on M1

and therefore the flow of the normalised gradient vector field ν1 := ∇M1f1
|∇M1f1|1 would

define a diffeomorphism from M1 to the product R × Σ1 for some smooth level
hypersurface Σ1 of f1; and f1 would be a nonconstant affine linear function of
t ∈ R. But this would contradict f1 > 0 on M1. Therefore, ∇M1f1 = 0 must hold
on M1 i.e., f1 must be constant on M1. In turn, this implies that µ1(f1) = 0,
RicM1 = 0 when n2 ≥ 2 (anyway RicM1 = 0 when n2 = 1 as we saw above) and
that f2 ∈ W (M2, g2). Therefore, the function f is the trivial extension on M of
f2 ∈W (M2, g2). �

4. Case where dim(W (Mn, g)) ≥ 2

In this section, we look at the particular case where (1) has a k ≥ 2-dimensional
space of solutions.

Theorem 4.1. Let (Mn, g) be any connected complete Riemannian manifold.
Assume that (1) has a k ≥ 2-dimensional space of solutions. Then we have one of
the following:
1. Case k = 2: the manifold (Mn, g) must be isometric to the Riemannian product

(Mn−1
1 × R, g1 ⊕ dt2) for some complete Ricci-flat manifold admitting no line

(Mn−1
1 , g1). Moreover, the solutions of (1) on (Mn, g) are the affine linear

functions of t ∈ R extended constantly along M1.
2. Case k > 2: the manifold (Mn, g) must be isometric to the Riemannian product

(Mn−k+1
1 ×Mk−1

2 , g1 ⊕ g2) for some complete Ricci-flat manifold admitting no
line (Mn−k+1

1 , g1) and where (Mk−1
2 , g2) is either S2,R2 or H2 with standard

metric of curvature 1, 0,−1 (up to rescaling g) for k = 3 or is Rk−1 with standard
flat metric for k > 3. Moreover, the solutions of (1) on (Mn, g) are the solutions
of the Obata resp. Tashiro equation on (M2, g2) extended constantly along M1.

Proof. We first assume M to be simply-connected. By [14, Theorem A], which
can be applied since (1) is the particular case of the equation ∇2f = f · q for some
quadratic form q on TM , we already know that, if k ≥ 2, then (Mn, g) must be
isometric to the warped product (M1 ×M2, g1 ⊕ f2

1 g2) for some smooth positive
function f1 on M1, where (Mn−k+1

1 , g1) and (Mk−1
2 , g2) are complete [3, Lemma

7.2] simply-connected Riemannian manifolds and f1 is a smooth positive function
on M1. Moreover, (M2, g2) must be a spaceform and any solution f of (1) is of
the form f = π∗1f1 · π∗2f2, where f2 satisfies the Obata resp. Tashiro equation on
(M2, g2) [14, Theorem B]. Taking the above considerations on solutions of (1) on
warped products into account in case f1 is the warping function, Theorem 3.4 can
be applied and implies that f1 is constant, that (M1, g1) is Ricci-flat and that
f2 ∈W (M2, g2). We look at different cases according to k:
1. Case k = 2: then we could conclude above that f2 is an affine linear function of
t ∈ R. Since no nonconstant affine function can be periodic, any group action
leaving invariant some nonconstant f2 ∈W (M2, g2) must be trivial. Moreover,
if (M1, g1) could be split off a line, then it would be isometric to Σ1 × R for
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some smooth hypersurface Σ1 of M1; but then M1 × R ∼= Σ1 × R2 would carry
a k ≥ 3-dimensional space of solutions to (1), which would contradict k = 2.
Therefore, (M1, g1) cannot contain any line.

2. Case k > 2: then we could conclude above that f2 ∈W (M2, g2). If k = 3, then,
up to rescaling g, the manifold (M2, g2) must be isometric to either S2,R2 or H2

with standard metric of constant curvature 1, 0,−1 respectively; and W (M2, g2)
must consist of the solutions of the Obata resp. Tashiro equation on (M2, g2)
as we saw in Lemma 2.1.9. Again, in case M2 = S2 or H2, no group action on
M2 can leave any nonzero solution to (1) invariant on M2. If M2 = R2, then
no nontrivial group action preserves the 3-dimensional space of affine linear
functions on R2.
If k > 3, then, as a consequence of Lemma 2.1.9, the manifold (M2, g2) must
be isometric to flat Rk−1 and again no nontrivial group action preserves the
k-dimensional space of affine linear functions on Rk−1.
In both subcases, (M1, g1) cannot contain any line, otherwise dim(W (Mn, g)) ≥
k + 1.

In all cases, the only possible nontrivial group actions on M1 ×M2 is trivial along
the M2 factor. Thus, if M is not simply-connected, then M must be isometric to
Mn−k+1

1 ×Mk−1
2 , where M2 is a simply connected model space as above and M1

is a complete Ricci-flat manifold having no line since its universal cover cannot
contain any. Furthermore, every f ∈ W (M, g) must be the trivial extension on
M1 ×M2 of a solution f2 ∈ W (M2, g2). This concludes the proof of Theorem
4.1. �

Note that, as a consequence of Theorem 4.1, if a complete (Mn, g) carries an
(n + 1)-dimensional space of solutions to (1) with n 6= 2, then (Mn, g) must be
isometric to Rn+1 with standard flat metric.

5. Homogeneous case

Next, we look at homogeneous manifolds carrying nontrivial solutions of (1).

Theorem 5.1. Let (Mn, g) be any connected homogeneous Riemannian manifold.
Assume the existence of a non-identically vanishing smooth function f on M
satisfying (1).
Then one of the following holds:
1. If the scalar curvature S of (Mn, g) vanishes and f is nonconstant, then (Mn, g)

must be isometric to a flat manifold Rn/Γ for some discrete fixed-point free
subgroup Γ of O(n) n Rn.

2. If k := dim(W (Mn, g)) = 2, then (Mn, g) must be isometric to the Riemannian
product Rn−1

/Γ×R for some discrete fixed-point free and co-compact subgroup Γ
of O(n− 1) n Rn−1. In that case, the map W (R, dt2) −→W (Mn, g) extending
any affine linear function trivially on the first factor is an isomorphism.

3. If k = 3, then up to rescaling g, the manifold (Mn, g) must be isometric to
the Riemannian product Rn−2

/Γ× S2(ε), where S2(ε) is the simply-connected
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complete surface of constant curvature ε ∈ {0,±1} and Rn−2
/Γ is a compact flat

manifold. In that case, the map W (S2(ε), gS2(ε)) −→W (Mn, g) extending any
function trivially on the Σ-factor is an isomorphism.

4. If k ≥ 4, then (Mn, g) must be isometric to the Riemannian product Rn−k+1
/Γ×

Rk−1, where Rn−k+1
/Γ is a compact flat manifold and Rk−1 carries its standard

Euclidean metric.
5. If k = 1, then unless W (Mn, g) consists of constant functions, µ(f) = 0 must

hold for every f ∈W . Moreover, the manifold (Mn, g) must be a one-dimensional
extension of some homogeneous Riemannian manifold satisfying the particular
conditions (33) below.

Proof. If (Mn, g) has vanishing scalar curvature and f is nonconstant, then we
already know from Lemma 2.1 that (Mn, g) must be Ricci-flat. But because any
homogeneous Ricci-flat Riemannian manifold must be flat [1], actually (Mn, g) must
be isometric to a flat manifold Rn/Γ for some discrete and necessarily fixed-point
free subgroup Γ of O(n) n Rn. This shows statement 1.
If dim(W (Mn, g)) = k ≥ 2, then Theorem 4.1 implies that (Mn, g) must be
isometric to the Riemannian product Mn−k+1

1 ×Mk−1
2 , where Mn−k+1

1 is a Ricci-flat
manifold containing no line and Mk−1

2 is flat Euclidean space except when k = 3, in
which case it is also allowed to be S2 or H2 with standard spherical resp. hyperbolic
metric. Moreover, any solution to (1) must be the trivial extension to M of a
standard solution on M2. Now recall the following result, which is a combination of
Lemma 5.6 and the first part of the proof of Theorem 5.7 in [12]; the latter can be
applied because of W (Mn, g) being invariant under isometry: in our notation, the
isometries of (M1×M2, g1⊕g2) are the maps of the form h = (h1, h2), where h1 and
h2 are isometries of (M1, g1) and (M2, g2) respectively. This already implies that,
writing M = G/K, the group G when can be embedded into the direct product of
two groups, the first one acting isometrically and transitively on M1 and the second
one acting transitively on M2. In particular, (M1, g1) must itself be homogeneous.
In turn, this implies that, being Ricci-flat, (M1, g1) must be flat, again by [1].
Therefore (M1, g1) must be isometric to Rn−k+1

/Γ for some discrete fixed-point
free subgroup Γ of O(n− k + 1) n Rn−k+1. Since only compact flat manifolds have
no line, the subgroup Γ must be co-compact i.e., M1 must be compact. This shows
statements 2, 3 and 4.

Let us now assume the space W (Mn, g) of functions satisfying (1) to be
one-dimensional on M = G/K. Then as in [12, Sec. 5] we consider the action of G
on W (Mn, g). Because the Ricci-tensor of M is isometry- and thus G-invariant,
so is equation (1), i.e. for every f satisfying (1) and every h ∈ G, the function
f ◦ Lh−1 also satisfies (1). But because of dim(W (Mn, g)) = 1, there exists for a
fixed nonzero f ∈ W (Mn, g) and every h ∈ G a nonzero constant Ch such that
f ◦ Lh−1 = Ch · f . The map G→ R×, h 7→ Ch is a Lie-group homomorphism and
actually takes its values in {±1} if µ(f) 6= 0 since, by invariance of µ(f) under
isometry,

µ(f) = µ(f ◦ Lh−1) = µ(Ch · f) = C2
h · µ(f)
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for every h ∈ G. Therefore, if µ(f) 6= 0, then Ch ∈ {±1} for every h ∈ G. Now if M
is connected as in the assumptions, then so can be assumed G (otherwise replace
G by the connected component of the neutral element), in which case necessarily
Ch = 1 holds for every h ∈ G and therefore every f ∈W (Mn, g) is constant.

Therefore µ(f) = 0 holds. As a consequence, S = −2 and f has no critical point
on M , see Lemma 2.1.

Next we show that (Mn, g) must be the one-dimensional extension of some
homogeneous Riemannian manifold Nn−1 with Ricci-tensor having particular
properties. Consider the subgroup H of G defined by

H := {h ∈ G | Ch = 1} ,

that is, H is the subgroup of all elements of G leaving a (thus any) function
f ∈W (Mn, g) invariant. Since C : G→ R×+ is a nontrivial and therefore surjective
Lie-group-homomorphism, H = ker(C) is a closed normal subgroup of G and of
codimension 1. Moreover, fixing f ∈ W (Mn, g) \ {0}, we know from Lemma 2.1
that f(M) = R×+ = (0,∞) since f can be expressed as an exponential function
along any integral curve of its normalised gradient. We let N := f−1({1}), which is
a smooth hypersurface of M . By definition, H leaves N invariant. Moreover, fixing
some x ∈ N , any h ∈ G with Lh(x) = x must satisfy Ch = 1 and therefore lie in
H. In other words, the isotropy group Hx := {h ∈ H |Lh(x) = x} of x under the
H-action must coincide with K = Gx. Independently, for any y ∈ N , there is an
h ∈ G such that Lh(x) = y; again, because of f(x) = f(y) 6= 0, necessarily Ch = 1
must hold, i.e. h ∈ H. This proves that the orbit H · x := {Lh(x) |h ∈ H} of x
in N must be all of N and therefore N = H/K is a H-homogeneous Riemannian
manifold. As in the proof of [13, Theorem 5.1], we split the Lie algebra G = P ⊕K
of G in an AdG(K)-invariant and orthogonal way and let ξ ∈ P ∼= TM be the
vector corresponding to ν ∈ T⊥N . Note that, because of C|H = 1, the gradient
of f and therefore also ν are preserved by the H-action, so that ξ makes sense.
Actually, P = Rξ ⊕

(
(Rξ)⊥ ∩ P

)
and H =

(
(Rξ)⊥ ∩ P

)
⊕K, the splittings being

orthogonal. Furthermore, the Lie-bracket of ξ in G preserves H because of H being
a normal subgroup of G. This already proves that G = H n R and that (M, g) is
the one-dimensional extension of the H-homogeneous space (Nn−1, g|N ).

In that case, following [13], we fix some α ∈ R× and let D := 1
α [ξ, ·] = 1

αLξ,
which is hence a derivation of H. We denote by S and A the symmetric and
skew-symmetric parts of D respectively seen as endomorphisms of TN , see [13, Eq.
(2.1)]. Let T := −∇ξ denote the Weingarten map of N in M . Then by [13, Prop.
2.7] we have T = αS and ∇ξT = −α2[S,A]. Furthermore, [13, Lemma 2.9] implies
that, for all X,Y ∈ TN ,

ric(ξ, ξ) = −α2tr(S2)
ric(X, ξ) = α(δS)(X)
ric(X,Y ) = ricN (X,Y )− (α2tr(S))g(SX,Y )− α2g([S,A]X,Y )

Now writing f(t) = et, where t lies in the R-factor of G = H n R, we have
∇df = fdt2 − fg(T ·, ·) which, together with ∇ξξ = 0, gives that identity (1) is



130 N. GINOUX AND G. HABIB

equivalent to
α2tr(S2)(= α2|S|2) = 1
α(δS) = 0
−αg(SX,Y ) = −ricN (X,Y ) + α2tr(S)g(SX,Y ) + α2g([S,A]X,Y )

for all X,Y ∈ TN . In other words, (1) is equivalent to

(33)


α = ε

|S|
δS = 0
RicN = 1

|S|2 ((tr(S) + ε|S|)S + [S,A])

for some ε ∈ {±1}. This shows statement 5 and completes the proof of Theorem
5.1. �

Note that [21, Theorem 1.5] allows for some partial classification in case (Mn, g)
is homogeneous, because in their notation our 2-tensor q = −Ric is preserved by
the group action. Nevertheless, we point out that the results we obtain in Theorem
5.1 describe the underlying space as well as the space of solutions in a more detailed
way according to the dimension.

The case where dim(W (Mn, g)) = 1 could lead to new examples, see [13] and
[11].

6. Kähler case

As in [5], we next consider the case where (Mn, g) is assumed to be Kähler.

Theorem 6.1. Assume (M2n, g, J) to be a complete Kähler manifold and let f
be any nonconstant smooth real-valued function satisfying (1) on M . Then, up
to rescaling g, the Kähler manifold (M2n, g, J) is holomorphically isometric to
S2(ε)× Σ2n−2 for some Ricci-flat Kähler manifold Σ, where S2(ε) = S2 if ε = 1,
H2 if ε = −1 and either R2 or R× S1 if ε = 0; moreover, the Kähler structure is
the product Kähler structure and f is the trivial extension to M of a solution to
(1) on S2(ε).

Proof. The first steps follow those in the proof of [5, Theorem 1.3]. Since the
Ricci-tensor of (M, g, J) is J-invariant, so is the Hessian of f by (1), i.e. ∇2f ◦ J =
J ◦∇2f . As a first consequence, the vector field J∇f is a (real) holomorphic vector
field on (M, g, J) and therefore its zeros – which are precisely the critical points
of f – form a totally geodesic Kähler submanifold of M of dimension 2k < 2n; in
particular the regular set of f is dense in M . As a second consequence, the 2-form
g(∇2f ◦ J · , ·) may be rewritten 1

2L∇fΩ, where Ω := g(J · , ·) is the Kähler form of
(M, g, J). Therefore,

d
(
g(∇2f ◦ J · , ·)

)
= 1

2d (L∇fΩ) = 1
2d (∇fydΩ + d(∇fyΩ)) = 0 ,

i.e. g(∇2f ◦J · , ·) is a closed 2-form on M . But because the Ricci-form g(Ric ◦J · , ·)
is also closed on M , so is the 2-form 1

f g(∇2f ◦ J · , ·) on {f 6= 0}, again by (1). This
implies df ∧

(
g(∇2f ◦ J · , ·)

)
= 0 on {f 6= 0} and therefore on M by density (recall
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that f−1({0}), if nonempty, is a totally geodesic hypersurface of (M, g)). In turn
this implies the existence at each regular point of f of a linear form λ on (∇f)⊥
such that, for every X ⊥ ∇f ,

(34) ∇2
JXf = λ(X)∇f .

For X = J∇f , we obtain via (2) that ∇S is pointwise tangent to ∇f , i.e. there
exists a function θ on M such that ∇S = θ∇f on M (this holds true on the
regular set of M and hence on M by density, taking into account that at every
critical point both ∇f and ∇S vanish). For X ∈ {∇f, J∇f}⊥, by J-invariance of
∇2f the r.h.s. of (34) must vanish whenever the basepoint is a regular point of
f . In turn this implies Ric(X) = 0 for all X ∈ {∇f, J∇f}⊥ and at every regular
point of f . Now because of Ric(∇f) =

(
S
2 + fθ

4

)
∇f , the J-invariance of Ric and

Ric|{∇f,J∇f}⊥ = 0, we obtain

S = S + fθ

2 ,

so that θ = 0, first on the regular set of f and then on M by density, i.e. S is constant
on M . This implies that both distributions Span(∇f, J∇f) and {∇f, J∇f}⊥ are
integrable and totally geodesic, the former one being the tangent bundle of a surface
of curvature S

2 – which may be assumed to be ±1 up to rescaling g in case S 6= 0
– and the latter the tangent bundle of a necessarily Ricci-flat Kähler manifold Σ.
The rest of the proof is analogous to that of Theorem 2.2.3. �

7. Outlook

The equation (1) can be seen as a particular case of the more general equation

(35) ∇2f = − f
m

(Ric− λ · Id) ,

where λ ∈ R and m ∈ N are parameters which are a priori allowed to take arbitrary
values. Note that, for m = n − 2 and positive f , equation (35) is the same as
equation (7) in [19, Lemma 2.1]. As in [11, 13, 14, 12], a much broader and richer
family of geometries could be recovered from Equation (35). This is the object of
future work.
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