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A GENERALISED RICCI-HESSIAN EQUATION
ON RIEMANNIAN MANIFOLDS

NicoLAS GINOUX AND GEORGES HABIB

ABSTRACT. In this paper, we prove new rigidity results related to some
generalised Ricci-Hessian equation on Riemannian manifolds.

1. INTRODUCTION

In this article, which follows [§], we continue investigating those Riemannian
manifolds (M™, g) supporting a non-identically-vanishing function f satisfying what
we call the generalised Ricci-Hessian equation [8, Eq. (1)]

(1) V2f = —f-Ric

on M, where V2f := VVf denotes the Hessian of f and Ric the Ricci-tensor
of (M™,g), both seen as (1,1)-tensor fields. Recall that this equation was first
considered when studying the so-called skew-Killing-spinor-equation [9], where
f is a particular function built out of a so-called skew-Killing spinor, see [8] for
more details. Recall also that, although equation looks like those considered by
other authors in the search of warped product Einstein metrics [14} [12], Lorentzian
Einstein metrics [6], quasi-Einstein metrics [4] [10] or gradient Ricci solitons [7],
it is not connected to any of those frameworks and therefore needs very different
kinds of techniques, hence leading to very different results. Again, we refer to the
introduction of [8] for more references and details.

In [8], we proved that, provided sufficiently many symmetries preserving a
solution f are available on the underlying manifold (M™,g), only one of the
following can occur: unless f is constant and then (M", g) is Ricci-flat, either
(M™, g) is isometric to the Riemannian product of a real interval with a Ricci-flat
manifold and f is an affine-linear function on the interval; or (M™, g) is isometric
to the Riemannian product of a Ricci-flat manifold with either the 2-sphere or
the hyperbolic plane and f is the trivial extension of a solution to the Obata resp.
Tashiro equation on the second factor.

In this article, we show that, in many further situations, some of which are
more general than those from [8], mostly only those two possibilities can occur:
namely when M has harmonic curvature tensor (Theorem, is a warped product
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(Theorem , when the space of solutions is of dimension at least 2 (Theorem
, when M is homogeneous (Theorem and when M is Kéhler (Theorem
6.1).

The article is structured as follows. After preliminary remarks in Section [2] we
describe and partially classify those warped products carrying solutions to .
In Section [4] we turn to the case where the space of solutions to is at least
2-dimensional. Section [f] is dedicated to the homogeneous case, which remains
partially open. We dedicate Section [6] to the case where the manifold is Kéhler.
We conclude by an outlook (Section [7)) about further work related to the above
equation.

In order for the article to remain as self-contained as possible, we included parts
of [8] in Section

We underline that no full classification is available yet. This is the object of
future work.
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2. PRELIMINARY REMARKS

We start with preliminary results, some of which are already contained in [8]
but, for the sake of self-containedness, we give and reprove them here. From now
on, we shall denote by S the scalar curvature of M and, for any function A on M,
by Vh the gradient vector field of h w.r.t. g on M. First observe that the equation
V2f = —f - Ric is of course linear in f but is also invariant under metric rescaling:
if § = \2g for some nonzero real number X, then V- f = A=2V" f (this comes from
the rescaling of the gradient) and Ric = A~2Ric. Let us denote by

W(M", g):={f€C®MR)|V*f=—f-Ric}

the real vector space of all smooth functions satisfying on (M™,g).
Lemma below corresponds to [8 Lemma 2.1] expanded with claims |Z| and
B

Lemma 2.1. Let (M™,g) be any connected Riemannian manifold carrying a
smooth real-valued function f satisfying on M.

1. The gradient vector field V f of f w.r.t. g satisfies

!
4

(2) Ric(Vf) = gw +1vs.

2. There exists a real constant u such that
(3) FAf+2/Vf?=p.
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3. The identity

@) fRicl = 155~ Ligrve + £

A
2 4 5

holds on M.

4. If n > 2 and f is everywhere positive or negative, then f solves if and only
if, setting u := ﬁ In|f|, the metric g := e*“g satisfies ric = (Au)g — (n —
2)(n — 3)du ® du on M and in that case Au = —-L-e>("=3)"_ In particular, if
n = 3, the existence of a positive solution f to is equivalent to (M, f~2g)
being Finstein with scalar curvature —3AIn|f]|.

5. If M is closed and f is everywhere positive or negative, then f is constant on
M.

6. If nonempty, the vanishing set Ny := f~1({0}) of f is a scalar-flat totally
geodesic hypersurface of M.

7. For any x € M and all X,Y € T,,M, the identity
(5) RxyVf=-X(f)Ric(Y)+Y(f)Ric(X) — f ((VxRic)Y — (VyRic)X)

holds on M. As a consequence, at any critical point of f, the Ricci-tensor must
be Codazzi.

8. The dimension of W (M™, g) is always at most n + 1.

9. If furthermore M is Finstein or 2-dimensional, then M is Ricci-flat orn = 2 and
in that case M has constant curvature. In particular, when (M?,g) is complete,
there exists a nonconstant function f satisfying if and only if, up to rescaling
the metric, the manifold (M?, g) is isometric to either the round sphere S*> and
f is a nonzero eigenfunction associated to the first positive Laplace eigenvalue;
or to flat R? or cylinder S* x R and f is an affine-linear function; or to the
hyperbolic plane H? and f is a solution to the Tashiro equation V2f = f - 1d.

10. If S is constant, then outside the set of critical points of f, the vector field
vi= Ig—}cl is geodesic. Moreover, assuming (M™, g) to be also complete,

(a) if S > 0, then up to rescaling the metric as well as f, we may assume that
S =2 and that p = fAf +2|Vf|> =2 on M, in which case the function f
has 1 as maximum and —1 as minimum value and those are the only critical
values of f;

(b) if S =0 and f is nonconstant, then (M",g) is Ricci-flat, in particular it
is isometric to (R x X, dt?> @ gx) for some complete Ricci-flat Riemannian
manifold (X, gs) and, up to reparametrization, the function f is given by
flt,x) =t for all (t,z) € R x X;

(c) if S <0, then up to rescaling the metric, we may assume that S = —2 on
M, in which case one of the following holds:

(i) if p > 0, then up to rescaling f we may assume that p = 2, in
which case f has no critical value and f(M) =R, in particular M is
noncompact;
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(ii) if u =0, then f has no critical value and empty vanishing set and, up
to changing f into —f, we have f(M) = (0,00), in particular M is
noncompact;

(iii) if p < 0, then up to rescaling f we may assume that p = —2, in
which case f has a unique critical value, which, up to changing f into
—f, can be assumed to be a minimum; moreover, f(M) = [1,00), in
particular M is noncompact.

Proof. The proof of statement [I} follows that of [I8, Lemma 4]. On the one hand,
we take the codifferential of V2 f and obtain, choosing a local orthonormal basis
(ej)i<j<n of TM and using the Weitzenbock formula for 1-forms:

n

SV ==Y (Ve,Vf) (e5)

j=1

=_ i (vejveij — Vvejejvf)

j=1
=V*V(V/f)
(6) = A(Vf) = Ric(V/f).
On the other hand, by and the formula JRic = —%VS,
6V2f =6 (—f - Ric)

= Ric(Vf) — f - 6Ric
f
2
Comparing both identities, we deduce that A(V f) = 2Ric(V f)+ %VS’. But identity
also gives
(7) Af =—tr (V2f) = fS,
so that A(Vf) = V(Af) = V(fS) = SVf + fVS and therefore Ric(Vf) =
%Vf + %VS, which is (2).

By and , we have
2V(IVIP) = 4V5,f

= —4f - Ric(Vf)

_ S f

= —4f . (2Vf+ 4VS)
—2SfVf— f*VS
= V(52

D _v(ra,

= Ric(Vf) + =V5.

from which follows.
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Taking the codifferential of , we obtain on the one hand, using 0Ric = —1VS:

2
§(RicV f) = (6Ric, V f) — (Ric, V2f)
1)

—%ws, V) + f|Ric].

On the other hand, the codifferential of the r.h.s. of is given by

5(§Vf + £v5) = —%<VS,Vf> + gAf - in, VS) + %AS
_ 3 S f 1
= — (VS VS) + =5~ + {AS.

Comparing both identities yields .
If f vanishes nowhere, then up to changing f into — f, we may assume that f > 0
on M. Writing f as e(>~™* for some real-valued function u (that is, u = ﬁ In f),

the Ricci-curvatures (as (0, 2)-tensor fields) ric and ric of (M, g) and (M, g = e?*g)
respectively are related as follows:

(8) ric = ric + (2 — n)(Vdu — du ® du) + (Au — (n — 2)|dul?)g.

But Vdf = (n —2)%f - du ® du + (2 —n)f - Vdu and the Laplace operators A of
(M, g) and A of (M,g) are related via Av = e~ 2" (Av — (n — 2)g(du, dv)) for any
function v, so that

ric = ric + %Vdf —(n—2)%du ® du + (n — 2)du @ du + (Au)g

= ric + %Vdf —(n—2)(n —3)du @ du + (Au)g.

As a consequence, f satisfies (1)) if and only if ric = (Au)g — (n — 2)(n — 3)du ® du
holds on M. Moreover,

FAF+ 202 = £+ (—(n — 22 flduf2 — (n — 2) fAu) +2(n — 2)* £2|duf?
= —(n =2 (Au— (n—2)|duf?)
=—(n—2)f%- . Au
= —(n—2)e2 M. 2u LAy
= —(n—2)e2B v Ay,

in particular (3) yields Au = —-£-e2("=3)* In dimension 3, we notice that Au = £.
This shows statement A

If f vanishes nowhere, then again we may assume that f > 0 on M. Since M
is closed, f has a minimum and a maximum. At a point x where f attains its
maximum, we have u = f(z)(Af)(z) + 2|V f|? = f(z)(Af)(x) > 0. In the same
way, 4 = f(y)(Af)(y) <0 at any point y where f attains its minimum. We deduce
that u = 0 which, by integrating the identity fAf + 2|V f|? = p on M, yields
df = 0. This shows statement
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The first part of statement [6] is the consequence of the following very general
fact [I4] Prop. 1.2], that we state and reprove here for the sake of completeness: if
some smooth real-valued function f satisfies V2f = fq for some quadratic form ¢
on M, then the subset No = f~* ({0}) is — if nonempty — a totally geodesic smooth
hypersurface of M. First, it is a smooth hypersurface because of d, f # 0 for all
x € Np: namely if ¢: R — M is any geodesic with ¢(0) = z, then the function
y := f o c satisfies the second order linear ODE y” = (V2f,¢) = q(¢,¢) -y on R
with the initial condition y(0) = 0; if d,. f = 0, then 3'(0) = 0 and hence y = 0 on
R, which would imply that f = 0 on M by geodesic connectedness, contradiction.
To compute the shape operator W of Ny in M, we define v := % to be a unit
normal to Ng. Then for all x € Ng and X € T, M,

1
V¥ = \V/ VMY
xv= (IVfI) ] IVfI x Vi

XV 1 ou
= awrp Ve VXY
1
9) :W'(Vﬁff—<vxfw>"/) )

in particular W, = —(Vv), = 0 because of (sz)x = f(x)qy = 0. This shows that
Ny lies totally geodesically in M.
Now recall Gaufl equations for Ricci curvature: for every X € TNy,

Ricy, (X) = Rice(X)" — RY v + tr,(W) - WX — WX

where Ric(X)? = Ric(X) — ric(X,v)v is the component of the Ricci curvature
that is tangential to the hypersurface Ny. As a straightforward consequence, if Sy,
denotes the scalar curvature of Ny,

Sny = 8 — 2ric(v, v) + (trg(W))? — |W|2.
Here, W = 0 and Ric(v) = Zv along Ny because N lies totally geodesically in M,
so that
Sy, =8 — 2ric(v,v) =5 -5=0.
This proves Ny to be scalar-flat and statement [6]

As for claim , a straightforward consequence of is that, at every x € M
and for all X, Y € T, M, we have

RxyVf=[Vx,Vy]Vf— fo,y]f
— _X(f)Ric(Y) + Y(f)Ric(X) — f (VxRic)Y — (VyRic)X) ,

which is identity . In particular, because 0 cannot be a critical value of f by
statement @, the Ricci-tensor of (M™, g) must be Codazzi at every critical point of
f. This proves claim

Statement , which can be found in [I4] Prop. 1.1], is a further consequence of
the general fact mentioned above that any f € W(M™, g) is uniquely determined
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by its value as well as the value of its gradient at a given point. This implies that,
given any x € M, the linear map

W(M™,g) — R x T, M

fr—=(f(2), (Vf)(x))

is injective, which proves claim Note that the upper bound n+1 for dim(W (M™ g))
is obviously attained when (M™, g) = (R™, can) is the flat Euclidean space.

Statement @ can be considered as standard. In dimension 2, Ric = %Id = KId,
where K is the GauB curvature of (M2, g). But we also know that Ric(Vf) =
gi + %VS =KVf+ %VK. Comparing both identities and using the fact that
{f # 0} is dense in M leads to VK = 0, that is, M has constant GauB} curvature.
Up to rescaling the metric as well as f, we may assume that S,u € {—2,0,2}.
If M? is complete with constant S > 0 (hence K = 1) and f is nonconstant,
then u > 0 so that, by Obata’s solution to the equation V2f + f - Idzy = 0, the
manifold M must be isometric to the round sphere of radius 1 and the function f
must be a nonzero eigenfunction associated to the first positive eigenvalue of the
Laplace operator on S?, see [20, Theorem A]. If M? is complete and has vanishing
curvature, then its universal cover is the flat R? and the lift f of f to R? must be
an affine-linear function of the form f(z) = (a, ) + b for some nonzero a € R?
and some b € R; since the only possible nontrivial quotients of R? on which f may
descend are of the form R/7 . 5 x R for some nonzero & € a', the manifold M itself
must be either flat R? or such a flat cylinder. If M? is complete with constant
S < 0, then f satisfies the Tashiro equation V2f = f - Idras. But then Y. Tashiro
proved that (M2, g) must be isometric to the hyperbolic plane of constant sectional
curvature —1, see e.g. [23, Theorem 2 p.252], see also [15], Theorem G]. Note that
the functions f listed above on S?, R?, S! x R or H? obviously satisfy .

If (M™,g) is Einstein with n > 3, then it has constant scalar curvature S and
Ric = % -1d. But again the identity Ric(Vf) = %Vf + {VS = %Vf yields n = 2
unless S = 0 and thus M is Ricci-flat. Therefore, n = 2 is the only possibility for
non-Ricci-flat Einstein M. This shows statement [0

If S is constant, then Ric(V f) = gi. As a consequence, Vzvff = —fRic(Vf) =
—%V f. But, as already observed in e.g. [22], Prop. 1], away from its vanishing
set, the gradient of f is a pointwise eigenvector of its Hessian if and only if the
vector field v = % is geodesic, see @D above. Assuming furthermore (M™,g)
to be complete, we can rescale as before f and g such that S, € {—2,0,2}. In
case S > 0 and hence S = 2, necessarily p > 0 holds and thus p = 2. But then
f?+|Vf|? =1, so that the only critical points of f are those where f2 = 1, which
by f? < 1 shows that the only critical points of f are those where f = +1 and
hence where f takes a maximum or minimum value. Outside critical points of f,
we may consider the function y := fovy: R — R, where v: R — M is a maximal
integral curve of the geodesic vector field v. Then y satisfies ¢y = [V f| oy > 0 and
y(t)2 4+ y'(t)2 = 1, so that 3y’ = /1 — y2 and therefore there exists some ¢ € R
such that

y(t) =cos(t+¢) VteR.
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Since that function obviously changes sign and 0 is not a critical value of f, we
can already deduce that f changes sign, in particular No = f~1({0}) is nonempty.
Moreover, the explicit formula for y shows that f must have critical points, which
are precisely those where cos reaches its minimum or maximum value. This shows
statement [I0al

In case S = 0, we have Ric = 0 by since f is assumed to be nonconstant.
This proves statement [TOb}

In case S < 0 and thus S = —2, there are still three possibilities for u:

o If > 0, then ¢ = 2 and becomes —f? + |[Vf|? = 1, hence f has no
critical point. If  is any integral curve of the normalised gradient vector field
v= %, then the function y := f o~y satisfies the ODEs y' = /1 + y2, therefore
y(t) = sinh(t + ¢) for some real constant ¢. In particular, f(M) = R and M
cannot be compact.

o If =0, then (3] becomes f2 = |V f|2. But since no point where f vanishes can
be a critical point by the fifth statement, f has no critical point and therefore
must be of constant sign. Up to turning f into — f, we may assume that f > 0
and thus f = |V f|. Along any integral curve v of v = %, the function y := fo~y
satisfies y' = y and hence y(t) = C - €' for some positive constant C. This shows
f(M) = (0,00), in particular M cannot be compact.

o If 4 <0, then = —2 and becomes —f2 + |V f|?> = —1. As a consequence,
because of f2 =1+ |V f|? > 1, the function f has constant sign and hence we
may assume that f > 1 up to changing f into —f. In particular, the only possible
critical value of f is 1, which is an absolute minimum of f. If v is any integral
curve of the normalised gradient vector field v = %, which is defined at least
on the set of regular points of f, then the function y := f oy satisfies the ODEs
y' = v/y? — 1, therefore y(t) = cosh(t + ¢) for some real constant ¢. Since that
function has an absolute minimum, it must have a critical point. It remains to
notice that f(M) = [1,00) and thus that M cannot be compact.

This shows statement [[0d O

Next we give a closer look at the case where the scalar curvature of (M™,g) is
constant.

Theorem 2.2. Let (M",g) be any connected Riemannian manifold carrying a
nonzero smooth real-valued function f satisfying on M. Assume the scalar
curvature S of (M™, g) to be constant and nonvanishing. Up to rescaling the metric
g on M it may be assumed that S = 2¢ for some € € {£1}.

Then the following holds.

1. Every regular level hypersurface N. := f=*({c}) of f must have vanishing scalar
curvature and its Ricci-tensor be given by Ricy, = —W (VysRic).

2. If either n = 3 or both n > 4 and Ric is assumed to be nonnegative when € =1
resp. nonpositive when € = —1, then the Ricci-tensor has pointwise 2 eigenvalues,
€ with multiplicity 2 and O with multiplicity n — 2.
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3. Ifn = 3, the manifold (M3, g) must be isometric to either S?(e) xR or S?(g) x S*
with product Riemannian metric, where S%(g) is the simply-connected complete
surface of constant curvature ¢ € {£1}; and f must be the trivial extension to
M of a solution of the Obata resp. Tashiro equation on S*(1) = S? (ife =1)
resp. S?(—1) = H? (ife = —1).

Proof. We look at the Gaufl equations for Ricci and scalar curvature along each

~1({c}) for any regular value ¢ of f. Denoting W = —Vv = ﬁRicT =
Iv—fflRic the Weingarten-endomorphism-field of N, in M, where Ric is the pointwise
orthogonal projection of Ric onto T'N,., we have tr(W) = i S 5 by Ric(v) = Sy.

VI 2
As a consequence, we have, for all X € T N,:
Ric(X) = Ric(X)T
= Ricy, (X) + W2X — tr(W)WX + Ry v
f2

:RiCNC(X) |Vf|2

(RicQ(X) — ‘;Ric(X)> + Rx .

But we can compute the curvature term Ry , v explicitly from : for any X € TN,

__X() v(f) o o :
Rx,v=— N < Ric(v) + WR o(X) — V7 ((VxRic)y — (V,Ric) X)
= Ric(X) — Wfﬂ(vx (Rlcu) Ric(VXV)) |fo| (V,Ric) X
= Ric(X) + / (SId RIC) (WX)+ L(V Ric) X
Ml IV
2
(10) = Ric(X) + |fo|2 <SR1C( ) — Ric2(X)> IfoI (V,Ric)X

so that, with (V,Ric)(v) = V,(Ric(v)) — Ric(V,v) = V,(5v) = 0 on M, we
obtain

Ricy, = I V. Ric,

IV /]

as claimed in statement[l] That identity has important consequences. First, choosing
a local o.n.b. (ej)lgjgn_l of TNC,

n—1
Sn. = Y _(Ricn, (¢;), ¢;)
=1
__ L z_: V. Ric)(e;), e;)
VIl = “
/

=———-tr(V,Ric) ,
o) (VR
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because of (V,Ric)(v) =0, so that

__ I
ve = 197

f

tr(V,,RiC) = —W .

v(tr(Ric)) = v(S)=0.

I
IV
Therefore, each level hypersurface NN, is scalar-flat. This concludes the proof of
statement [1} We turn to [2| Because of S being constant, we already know by
that, outside its vanishing set, the gradient vector field Vf of f is a pointwise
eigenvector for the Ricci tensor associated to the eigenvalue g = ¢. Writing the Ricci

tensor as Ric = e’ @ v+ Ric’, where Ric? is a pointwise symmetric endomorphism
of v+ C TM, we deduce from () and the fact that {f # 0} is dense in M that

2
(11) Ric” | = SR
4

on {Vf # 0}. Since tr(Ric’) = g = ¢, identity implies that, at every point
outside the critical set, the set of possible eigenvalues of Ric? stands in one-to-one
correspondence with the sphere S~ of dimension n — 3, seen as the unit sphere in
the (n— 2)-dimensional space v. If n = 3, then this means that Ric’ has pointwise
the eigenvalues € and 0, each of multiplicity one, on the regular set of f. If n > 4,
we assume furthermore that Ric > 0 when € = 1 and Ric < 0 when ¢ = —1. In that
case, (11) implies that Ric” has exactly one eigenvalue that is equal to ¢ and that
all other eigenvalues vanish, at least on {Vf # 0}. To sum up, the Ricci tensor
of (M™, g) has at each point of {Vf # 0} C M the eigenvalues & of multiplicity 2
and 0 of multiplicity n — 2 respectively. Note that both eigendistributions of the
Ricci-tensor are smooth since they have constant rank. Furthermore, the critical
set {Vf = 0} of f must have empty interior, otherwise the Ricci tensor would
vanish identically on that interior by and the fact that 0 is not a critical value
of f. But this would contradict the fact that the scalar curvature S of (M™,g) is
assumed to be constant and nonvanishing. Therefore, Ric has actually € and 0 as
eigenvalues with multiplicities 2 and n — 2 respectively on all of M. This proves 2}

It remains to show that, when n = 3, both eigendistributions of the Ricci tensor
of (M3, g) are actually parallel. Let n be a unit eigenvector of Ric associated to
the eigenvalue € and e3 be a unit eigenvector of Ric associated to the eigenvalue
0; since both Ric-eigenvalues are constant and distinct and Ric is smooth, n and
e3 exist globally along V., no need of analyticity. In dimension 3 again, because
Sn. = 0 yields Ricy, = 0 and thus V, Ric = 0, the vector fields n and e3 can
actually be defined everywhere on the regular set of f using parallel transport along
v-geodesics. Moreover, because the eigenvalue 0 of the Ricci-tensor has multiplicity
1 on all of M as we showed above, the vector field e3 can be defined globally on M.

We show that Ves = 0, i.e. e3 is parallel on the dense open subset {V f # 0}
and hence on M. First, because of V,Ric = 0, ker(Ric) = Res and |e3| = 1, we
have V,e3 € ker(Ric) Negs = {0} i.e., V,e3 = 0. Next, following from the identity

0= 1VS = —JRic = (V,Ric)n + (Ve Ric)es + (V, Ric) v,

_5 ——
0
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we have (V,Ric)n = —(V¢,Ric)es. Here we notice that
(VyRic)n = eVyn — Ric(Vyn) = e(Vyn — (Vyn, v)v)
and, with V.,v = —We3 = ﬁRic(eg) =0, that
(VesRiC)e?) = _Ric(v63e3) = _€<v€363777>77-

Therefore,
0=2e(Vyn,m)

= ((VyRic)n, n)

= 7<(v63 Ric)637 77>

- €<v33633 77> .
Since (Ve e3,v) = —(e3, Ve,v) = 0 and (V. e3,e3) = 0, it can be deduced that
v63€3 =0.
Analogously,

0= —e(Vezes,n)(n, es)
= ((Ve,Ric)es, e3)
= —{(V,Ric)n, e3)
=—e(Vyn,e3),

so that (V,es,n) = 0. Again, because (V,e3,e3) = 0 = (V,es, ), it can be deduced
that V,e3 = 0. To sum up, we obtain Ves = 0 i.e., the vector field es is parallel
on M\ {Vf =0} and hence on M. As a consequence, the holonomy group of M
splits locally, therefore the universal cover of M is isometric to the Riemannian
product ¥ X R of some complete surface 3 with R. Moreover, using formula
for X = 7 and taking into account that V,Ric = 0, we obtain
2 2

so that K (n,v) = (R, ,v,n) = €|n|* = . Therefore, the distribution Span(n,v) —
M integrates to a surface of constant curvature e € {£1}. Thus X = S?(¢), which
is the simply-connected complete surface with curvature e € {#1}. In case ¢ = 1,
the lift f of f to S? x R is constant along the R-factor and satisfies the equation
(VS*)2f = —f - 1d, which is exactly the equation characterizing the eigenfunctions
associated to the first positive Laplace eigenvalue [20, Theorem A]. Furthermore,
the isometry group of S? x R embeds into the product group of both isometry
groups of S2 and R and the first factor must be trivial since f, as the restriction
of a linear form from R3 onto S?, is not invariant under {+Id}. Therefore, M is
isometric to either S2 x R or to S? x S! and in both cases f is the trivial extension
of an eigenfunction associated to the first positive Laplace eigenvalue on S2. In
case ¢ = —1, the lift f of f to H2 x R is constant along the R-factor and satisfies
the equation (VHQ)2 f = f-1d, which is exactly the Tashiro equation. Since the
isometry group of H? x R embeds into the product group of both isometry groups

R, v= (1 +
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of H? and R and the first factor must be trivial since f has no nontrivial symmetry
[23, Theorem 2 p.252], we can deduce as above that M is isometric to either H? x R
or H? x S! and f is the trivial extension of a solution to the Tashiro equation on
H2. This proves statement [3| and concludes the proof of Theorem O

Next we look at manifolds with harmonic curvature tensor. Recall that, by
definition, the Riemann curvature tensor R of (M", g) is harmonic if and only if
0R = 0 holds on M. By the first and second Bianchi identities, we have, for all
XY, Z €T, M at some x € M:

(0R)(X,Y,Z) = (VyRic)(Z,X) — (VzRic)(Y, X).
As a consequence, 6R = 0 at some x € M is equivalent to
(VxRiC)(Y) — (VyRiC)(X) =0
for all X,Y € T, M i.e., to Ric being a Codazzi-tensor at z. A 3-dimensional
Riemannian manifold has harmonic curvature if and only if it is conformally flat
and has constant scalar curvature. In dimension n > 4, a Riemannian manifold
has harmonic curvature if and only if it has harmonic Weyl tensor W, that is,
OW = 0 holds on M, and constant scalar curvature. For instance, any conformally

flat manifold with constant scalar curvature has harmonic curvature tensor. We
refer to |2, Sec. 16.4] for more details about harmonic curvature.

Theorem 2.3. Let (M™,g) be any connected complete Riemannian manifold
carrying a monzero smooth real-valued function f satisfying on M. If the
Riemann curvature tensor of (M™,g) is harmonic, then either (M™, g) is Ricci-flat
or, up to rescaling the metric g, the manifold (M™, g) is isometric to the Riemannian
product S?(¢) x X2 where S?(¢) is the simply-connected complete surface of
constant curvature ¢ € {+1} and "2 is a Ricci-flat manifold. Moreover, f is the
trivial extension to M of a solution of the Obata resp. Tashiro equation on S? (if
e=1) resp. H? (ife = —1).

Proof. First recall that, if R = 0 holds on M — or, equivalently, if Ric is a
Codazzi-tensor — then the scalar curvature S of (M™, g) must be constant: given
any pointwise o.n.b. (e;)1<j<n of TM and X € TM, we have

X (S) = X (tr(Ric))
= tr (VxRic)
= (VxRic)(e;, ;)

1

<.
I

(Ve;Ric)(X, e;)

I
NE

= —(6Ric)(X)

<.
Il

o] 2
=
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so that necessarily dS = 0 holds on M. Since the scalar curvature S is assumed to
be non-identically vanishing, we may assume up to rescaling g that S = 2¢ with
e € {£1}.

For any s € N, we denote by (as) the assertion tr(Ric®) = 2¢® and by (bs)
the assertion §(Ric®) = 0. We show that, since the Ricci-tensor is assumed to be
Codazzi, both (as) and (bs) are true.

First, we have that, for every s, (b) implies (ast1): namely, as a consequence of
Ric(Vf) =eVf (see ([2)),

(VxRic*)(Vf) = — f(e°RicX — Ric*t1 X)

for every X € T'M. This yields, in a pointwise o.n.b. (e;)1<;j<n of TM,
n
§(Ric®)( Z Ve, Ric®)(ej, Vf)

= f( 58 — tr(Ric*™1))
= f(2e°T! — tr(Ric*th)).

Therefore, if §(Ric®) = 0, then tr(Ric*™") = 2¢5+!. This shows the claim. Note that
here we have not used the property that Ric is a Codazzi-tensor.

Second, we have, under the condition that Ric is Codazzi, that (bs) = (bs41)-
Namely assuming (by), assertion (as41) must hold true from the previous claim.
Therefore, for every X € TM,

n

> (VxRic)(e;, Ric*e;) = tr(VxRic o Ric*) =

j=1

X (1 (Rie' ) = 0.

Now using the fact that the Ricci-tensor is Codazzi, we compute

n

0= Z(VXRiC)(ej, Ric®e;)

<.
Il
s

I
-

(Ve,;Ric)(Ric’ej, X)

<.
Il
—_

|

((Ve,Ric® ) (e;), X) — Ric(((Ve,Ric®)(e;), X)

<
Il
—_

= —(dRic* ™) (X)

using again (bs). We deduce that (bs11) is true.

Since (as) and (bs) are satisfied for s = 1, we deduce that they are satisfied for
all s € N. From the Newton identities, it can be deduced that the Ricci tensor must
have pointwise the eigenvalues £ and 0, the former of multiplicity 2 and the latter
of multiplicity n — 2. Therefore, we get the pointwise orthogonal decomposition
TM = ker(Ric — eId) & ker(Ric).

It remains to show that both eigendistributions of the Ricci-tensor are parallel.
Let X,Y € ker(Ric — ¢Id) and Z € ker(Ric). Then the scalar product with Y in
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the formula (VxRic)Z = (VzRic)X allows to get on the one hand
9((VxRic)Z,Y) = —g(Ric(Vx Z),Y) = —eg(Vx Z,Y),
and on the other hand
g((VZRic)X,Y) = eg(V;X,Y) — g(Ric(V2X),Y)
=eg(VzX,Y)—g(VzX,RicY)
=0.

Thus, we deduce that 0 = g¢(Vx Z,Y) = —g(VxY, Z). Hence VxY € ker(Ric—eld)
and therefore the distribution ker(Ric — €Id) is parallel. The same computations
can be done for the distribution ker(Ric). This straightforwardly implies that
both eigendistributions ker(Ric — €Id) and ker(Ric) are parallel and therefore
integrable and totally geodesic. By the de Rham theorem, M splits locally as
the Riemannian product of a surface and an n — 2-dimensional submanifold.
Moreover, the Ricci-curvature — which is the Gauf-curvature — of the surface that is
pointwise tangent to the distribution ker(Ric — ¢Id) is € and the submanifold that
is pointwise tangent to ker(Ric) is Ricci-flat, see e.g. [2, Thm. 1.100]. Therefore
the universal cover of M is isometric to the Riemannian product S2(g) x ¥ of
the simply-connected complete surface with curvature ¢ € {—1,0,1} with some
simply-connected Ricci-flat manifold 3. The rest of the proof is analogous to that
of Theorem [2:2|3] This concludes the proof of Theorem [2.3] O

3. EXAMPLES IN WARPED PRODUCT FORM

We look for examples of warped products (M, g) := (M; x Ma, g1 ® ¢3gs) for
some smooth positive function ¢ on Mj, where (M, g1) and (Ms, go) are connected
Riemannian manifolds. We make the ansatz f(x1,z2) = fi(z1)f2(z2) for all
(z1,22) € M where f; and fo are smooth real-valued functions on M; and M,
respectively. We look for necessary and sufficient conditions for f to satisfy on

(M, g).

Proposition 3.1. Let (M",g) := (M{"" x MJ?, g1 ® p?g2) be a connected Rie-
mannian warped product, where p € C*(My,RY). For any two functions f; €
C(Mi,R), i = 1,2, let f:=mif1-7w3fo ie, f(z1,22) = fi(21)f2(z2) for all
(x1,m2) € M. Then f solves V2f = —f - Ric on (M,g) if and only if one of the
following occurs:

(a) The function % is constant on My, in which case it can be assumed up to re-

scaling f that fi = @. Then py(f1) := (na —2)|[VMif1|2 — fLAM £ is constant
on My and fi, fo solve

(12) (na — 1)(VM)2 f1 = f1 - Ricay,
(13) (VM2)2 fy = fo - (pa(f1)Idras, — Rica,)

respectively.
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(b) The function f2 is constant on Ma, in which case f1 solves
) n
(14) (VY02 fu = —fu (Ricar, = 2(VM)%)

on My, the function f%gl(lefl,VMlgo) + (ng — 1)|[VMip|2 — pAMip s
constant on each connected component of My \ f;*({0}) and the manifold
(Ms, g2) is Einstein with scalar curvature equal to

ﬂ2( - £91
bil

Proof. First, we have Vf = foVfi+ 1V fa = LVMLf + %VMQ fo, where VM f;
denotes the g;-gradient of f; on (M;,g;). Recall Koszul’s formula, valid for any
tangent vector fields X, Y, Z on some Riemannian manifold (M, g):

(VM0 f1,920) + (ny = DIV f} — oAM ).

o(VxY,2) = S{X(g(¥, 2)) + Y (9(Z, X)) ~ Z(s(X,Y))

(15) +9(1X,Y),2) - (Y, 2], X) + g(1Z,X],Y) }.

It can be deduced from that, for any X;,Y;, Z; € T'(nfTM;), we have

(16) Vx, Y1 =V{y
(17) Vx,Ys = 0x, Ya + )(1(;('0)3/2
(18) Vi, Vi = o1+ P x)
(19) Vx,Yo = Vi2Y, — ég(XQ,Yg)VMlap.
As a first consequence,
Vi, f= foVx, VM fy 4 Xif)e” ;flel(@)vazb + %VXIVMQJE
R N A
bil X1(p)

+ = | 0x, VM2 fo + =2V M2 )
2 —— @

0

X1(f1)e — fiXa(p)
3

= fo(VM)% f1+ VM f,

(20) :f2(VM1)§(1f1+éX1(%)VM2f2-
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Similarly,

Viof = Xa(f2) VM fr + f2Vx, VM fi 4+ QVXZVMWQ

1(VM1 f17 VMl 30)

:X2(f2)vM1f1+f2(aX2VM1f1+ Xz)

0
B (9B fa = Lo, T L))

j;l (VM)%, f2 +X2(f2)(VM1f fl LP)

Ly g 9o x,

(21) fl = (VM)%, fo + Xa(f2) V™ (fl) + é971(Vle17 VM) X
‘P ¥ ¥
Independently, by [2, Prop. 9.106], we have
. . n
(22) Ric(X,) = Ricar, (X1) — i(le)?;(l@

AM

% [V Mip|?
Therefore, f satisfies on (M, g) if and only if the following system of equations
holds, for all (X, Xs) € TM:

ll(Xl) :T1(X1)
12(X3) =ra(X2) '

(23)  Ric(Xs) = %Ricm (X2) + (

where

h(X1) = (VY% A+ éX (fl)Vsz
r(X1) =—fife- (RiCM1 (X1) — ;(VMI)AQXI@)

(Xa) = T (7Y, fa b X (2] + 2y (010 1, 9000 X,

AMISD VMISO 2

ro(X2) = —fifa- (ERiCMQ (X2) + <
Both equations imply that d (%) ® dfs = 0, that is, that % is constant on M; or
fo is constant on Ms.
Case £ is constant on M;: We may assume, up to rescaling f, and hence f,

that fi = ¢ holds on M;. The above system of equations becomes equivalent to
the following;:

(VMl)?lel =—f- (RiCM1 (X1) — %(VMI)?XJI)
(sz) f +MX :*flfQ'TQ(Xg)

)
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1

where T5(X32) := (%%RiCMz (X2) + (A]\;llfl — (ng — 1)%) Xg). Thus

(1=n2)(VM)2fi = —fi-Ricag

(VY2)? fo = —fa - Ricar, + fo ((n2 = 2)|VM f13 — LAY f1) Tdpar,
Since f5 is assumed to be non-identically vanishing and the second identity above
only depends on M,, the factor py(f1) := (na — 2)|VM f1|2 — fiAM1 £ must be
constant on M;. Actually we shall see later that, when no > 2, this already follows
from the equation for fi.
Therefore, in case f; = , equation for f := 7w} f1 - 75 fa is equivalent to the
function (ng — 2)|VMi 1|2 — fAM: f; = 1y (f1) begin constant on M; and

(ng —1)(VM)2f; = fi - Ricay,
(VM2)2 fo = fa - (1 (f1)ldrar, — Ricas,)

Case f» is constant on Ms: Then V2f = —f - Ric on (M, g) is equivalent to the
system

(V)2 fy = —fi-(Rica, — %(VMl)Q‘P)
M M M M 2 )
aCRAI Ry, = —f1 - LRicar + (A€ — (nz—l)'vg,%“)ldmz)

that is, assuming f; not to vanish identically on M,

(V211 =~ 1 (Ricar, = 22(VM)20)
Ricp, = (*%gl(le fr, VM) + (no— 1)[VMip[f — pAM: 90) -Idra,

)

the second equation holding on the dense open subset M \ f~1({0}). The second
of both above identities implies that the quantity

= (= 2T 5, T 4z = DIVl - i)

fi
is constant on M; and that M5 is Einstein with constant scalar curvature equal to
napy, whatever ny is. This concludes the proof of Proposition (I

Now we look at on Riemannian products, where f is not assumed to be in
product form.

Theorem 3.2. Let (M™,g) = (M1 x Ms, g1 ® g2) for some connected Riemannian
manifolds (M7, g1) and (Ma, g2). Assume M to be non Ricci-flat i.e., that Ricpr, # 0
or Ricpr, #0. W.lo.g. let Ricpr, # 0. Then a function f € C°(M,R)\{0} satisfies
on (M™,g) if and only if Ricy;, = 0, the function f only depends on Ms and
satisfies on (Ma, g2). As a consequence, the map W (Ma,g2) — W(M,g)
extending a function trivially on the My -factor, is an isomorphism.

Proof. First, we split pointwise Vf = VM f+ VM2 f according to the g-orthogonal
splitting Ty, 25\ M = Ty, My © Ty, Mo, for all (z1,72) € M. Using formulae -
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(19) and ¢ = 1, it can be deduced that, for all Xy € T'M;,
Vi f=Vx, (VM f) + Vx, (VM2 f)
= VX (VM F) + 0, (V2 )

and similarly, for all Xo € T' M,
Vi f =V, (V) + Vx, (VY f)
= 0x, (VM ) + VR (V).

By and (23), we obtain that f satisfies on (M™, g) if and only if, for all
(X1, X2) € TM; ® T My,

(24) VM f) + 0x, (VM2 f) = — fRicy, (X1)
(25) Ox, (VM f) + VA2 (VM2 f) = — fRicas, (X2) -

It can be deduced that both dx, (VM2 f) = 0 and dx, (VM1 f) = 0, for all (X1, X5) €
TM; & TMs. But the first identity is equivalent to the existence of functions
a1 € C®(M;,R) and as € C*°(Ms,R) such that f(xz1,22) = ai(x1) + as(x2) for
all (x1,z2) € M. Then the second identity is trivial and is equivalent to

(VM2)2a2‘m2 = —(al(ﬂ;‘l) + ag(fﬁg))RiCMQ

los

for all (x1,22) € My x Ms. But since the Lh.s. of the preceding inequality does
not depend on M; and because of Ricyz, # 0, this implies a; is constant on Mj,
therefore a; + ay € O (Mo, R) satisfies (1)) on (Ms, g2). But then together
with the assumption f # 0 forces Ricp;, = 0: choose a point z2 € My where
f(z2) # 0. This concludes the proof. O

Next we look for examples and partial classifications results for identities (12)
and , which correspond to the case fi = ¢. An obvious case is when f; = ¢ are
constant (and nonvanishing) on M;j. Then (Mj, g1) must be Ricci-flat, f(x1,x2) =
fa(zo) for all (x1,29) € M and, because of pi(f1) = 0 then, the function f,
must satisfy on (M, g2). This is actually a consequence of Theorem above.
Therefore we obtain an already known example in that case, see introduction.

Proposition 3.3. Let (M™,g) be any connected Riemannian mam'fold

1. Assume there exists an f € C°°(M,RY) solving V2f = - Ric on M for
some integer m > 2. Then ui(f) := (m —2)|Vf|*>+ ﬁ (m 2)|Vf\2 fAf
is constant on M and, if m > 2, then Ric(Vf) = m V(f2S), where
S is the scalar curvature of (M,g). Moreover, if m > 2, then f defines a
(0,n +m — 1)-Einstein metric on (M, g).

2. Assume there exists an f € C>(M,RX) solving V2f = f - (uld — Ric) on M
for some u € R. Then Ric(Vf) = (n_l SRV + fVS + 3V f and pso(f) =
2IVF2+ f2(S — (n+1) )—2|Vf|2—|—fAf wf? is constant on M.
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3. In case (M™,g) = (M]" x M3?, g1 & fig2) for some fi € C°(M:i,RY) and
f = mif1 - 75 fa for some fo € C®(My,R), there are, for each ni,ne > 1
examples of (M, gi, f;) for which f solves .

4. If (M™, g) is closed and f € C>°(M,RX) is such that p1(f) := k|Vf|* — fAf
is constant for some k € R, then f must be constant on M and therefore pi(f)

must vanish. As a consequence, if there exists a nonzero f € C*(M,R%) solving

Vif = % - Ric on some closed M and for some integer m > 2, then f must

be constant and therefore M must be Ricci-flat.

Proof. We first look at equation

I
(26) V2f_m_1 Ric

on M, for some integer m > 2. We first derive a few identities following from ,
see e.g. |18, Lemma 4]. We write down the proof for the sake of completeness.
Namely, by (6]), we know that

5 (V2f) = A(Vf) — Ric(Vf)
=V(Af) = Ric(Vf)

_ _ﬁvw) ~ Ric(Vf)
_ _ﬁ (SVf + fVS) — Ric(Vf),

where, as above, S := tr(Ric) is the scalar curvature of (M, g) and where we have
used Af = —n{fl tracing . But also yields

§(V2f) = 1 (Rie(V/) + fi(Ric))

- ﬁ<7Ric(Vf) - gvs) :

so that, bringing both identities for § (V2 f) together, we deduce that

m-—2 . 1 f
2T Rie(Vf) = fm(sv]w 5vs)

(27) = —m SV (f28).

In case m = 2, we deduce that V(f25) = 0 i.e., that f2S = —fAf is constant on
M. In case m > 2, we deduce that

(28) Ric(Vf) = — -V (£%9).

2(m—2)f
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Still when m > 2, it follows that

V(IVF?) =2(V)3sf
2f

= 1Ric(Vf)
(28) _ 1 . 2
 (m=2)(m—1) V(F79),

Therefore, p1(f) := (m —2)|Vf]? + L5 f25 = (m — 2)|V f|? — fAf is constant
on M. Note that this is also the case when m = 2 by the above remark. Note
also that, when m > 2, identity defines a so-called (0,n + m — 1)-Einstein
metric on (M, g) according to [14, 12]. By [5l Theorem 2.2], the existence of such a
positive f is equivalent to the warped product (M x F,g @ f?gr) being Ricci-flat,
where (F), gr) is an Einstein manifold of dimension m — 1 and with Ricp = p; - Id,

the constant p1 being given by py = (m — 2)|Vf|? — fAf = (m —2)|Vf|]> + L5

m—1"
which is exactly the constant uq(f) described above, see also [I8, Cor. 3]. This
statement remains true when m = 2 and Af = 0 (or equivalently p;(f) = 0). This
shows statement [Il

Next we look at
(29) V2f = f - (puld — Ric)

on M™ for some p € R and n > 2. First and as before, a few identities can be
deduced from . Namely, by @, we know that

§ (V2f) = A(Vf) = Ric(Vf)

V(Af) = Ric(V)

= V(f(S —np)) — Ric(Vf)

= (S —nu)Vf+ fVS —Ric(Vf),

where we have used Af = f(S — nyu) tracing (29). But also yields

§ (V2f) = —=(uVf — Ric(Vf)) + f6 (uId — Ric)

= —uVf +Ric(Vf) + gvs

so that, bringing both identities for § (V2 f) together, we deduce that

f

. n—1 S
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It follows that
V(IVfI?) =2V, f
= 2f(uV f — Ric(V[))

EY f((n Y1)V — gvs - SVf)
= "L () - 5V(S)

= %V ((n+Duf?— f29) .

Therefore, po(f) :=2|Vf|> + f2(S — (n+ V)p) = 2|VfI? + fAf — pf? is constant
on M. This proves statement [2]

As for statement [3] we look at different cases according to the values of ny and
niy.
Case ny = 1: Then ) is equivalent to M; being Ricci-flat. Together with
[AMf \VMl [z = —ul (f1) being constant by Proposmonm identity (13) is
equivalent to f§ = p1(f1)fo. Whatever the sign of p1(f1), there exists a solution
fo2 to that second-order linear ordinary differential equation on R, which is periodic
(and hence can be pulled down on a circle of suitable radius) if and only if p1 (f1) < 0.
As for f1, a trivial family of examples in each dimension n; may be produced as
follows. When n; = 1, the function f; solves the ordinary differential equation
—fift" + (f)? = —u1(f1), whose general solution is

a1(t) if p(f1)>0
fit) =9 bi(?) if p(f1)=0
c1 (t), dy (t), Gl(t) if ul(fl) <0

where

alt

Acosh(A™ /1 (f1)t + b)

Ae?

) =
) =
) i= Acos(A™ /=1 (f1)t + &)
)
) =

(

b1 (t
C1 (t
(

dlt —:I:\/_Ml f1t+¢
er(t Asinh(A= '/ —p1 (fi)t + ¢)

for real arbitrary constants A, ¢ with w.l.o.g. A > 0 (remember that f; = ¢ > 0 by
assumption). Note that all solutions are defined on R but that, in case u1(f1) <0,
the function f; must change sign somewhere, which makes the solution f; only
local then. Moreover, in case u1(f1) > 0, the solution f; — though positive on R —
is not periodic and therefore cannot be pulled down on an S*. Obviously, each of
the above f1’s can be trivially extended constantly in the other variables on R™
for every n; > 1.
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It is important to note that, in the cases where f; > 0 on R, corresponding to
p1(f1) > 0 as we have seen above, the induced metric ds? @ f1(s)?dt? on R? is the
hyperbolic one, for which we can anyway describe W (M, g) explicitly.

Case ny > 1: When ny > 2 and n; = 1, equation reduces to fi' =0 on My,
which has no positive solution on M; unless f; is constant or M; is a strict open
subinterval of R.

When ny > 2 and ni = 2, equation is equivalent to (VM1)2f) = f1¢1 - Idray,,

where ¢; = 2(n 1y~ But by [23, Sec. 2], this implies that, on any open subset
where f; has no critical point, (M2, g1) is locally isometric to (R?, dt? & p(t)?ds?),
where p := (0) and u is fi along the flow of its normalised gradient v := ﬁ%}?h.

Moreover, along any integral curve «y of v, which is a geodesic of (M7, g1) because of
VM f) being a pointwise eigenvector of (VM1)2 £, the function u must satisfy the
following second-order ordinary differential equation: for any ¢ in some nonempty
open interval,

u”(t) = g1 (VM)3 ) f1. (1)
_ (i) on(®)
2(n2 - 1)

(mlf) me—2 [VMAR
_< 5 =5 i 1) oy(t)
Ng — 2 ’

" oul) !

that is,

(31) u"-u—&—n2_2(u')2= Nl(fl) )

In the first special case where p;(f1) = 0, the general form of the solution u to

is u(t) = (at + b)% for real constants a,b with a # 0; assuming a and b to be
positive, the maximal existence interval for v is [—3, 00), in particular no complete
M can exist unless f; has critical points.

In the second special case where ny = 2, the second-order ordinary differential
equation may be reduced to the first-order one

u' =/ (fi) In(u) +C

for some real constant C'. Note that this implies that u is constant when ng = 2
and pq(f1) = 0. If p1(f1) > 0, the maximal existence interval for u is of the form
la, oo, whereas if p1(f1) < 0, that interval is of the form | — 0o, a[ for some real a.

Conversely, let us assume u to be any positive solution with w.l.o.g. positive

first derivative of on some open interval I about 0. Consider the warped
product (My,g1) := (I x X,dt?> ® ¢(t)2ds?) for ¥ = R or St, where ¢(t) := Z,((é))
Let f(t,s) := u(t) for all (¢,s) € M;. The above formulae and for the

Hessian of f simplify to V3 f = v - 0, and V3_f = % - 0. The identities
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/

and become Ric = 7%’ - Idpas. Taking into account that ¢ = —F—, we have

u’ (0
% =", so that V2f = " -Idryy, as well as Ric = —% -Idrps (recall that
ng = 2 here). Therefore, V2f = # - Ric if and only if "’ = — (n:’i(f))u, on [. But
because u”" = % — 22=2(y/)?, we have
w® (Hl(fl) _npg—2 (u')2>’
(ng — v/ (ng — D/ 2u 2 u
. u (_,ul(fl)u’ N2 —2 2u’u”u—(u’)3)
 (ng— D 2u? 2 u?
_ 1 ) (lul(fl) n Nng — 2 ) 20"y — (U,/)Q)
ng — 1 2u 2 U
_ (Ml(fl) L 22 '/~L1(f1)—(712—2)(“/)2—(1/)2)
ng — 1 2u 2 U
_ 1t ((n2—1)/i1(f1) B (n2—2)(n2—1)(u')2)
ng — 1 2u 2u
— u//7

so that is satisfied on (M2, g1).

In the subcase where ne = 2, equation is equivalent to (VM2)2f, = fogo -
Idras,, where ¢ := iy — 52. Now (30) yields 2 VM2 f, = S2opagMz f, 4 JogMeg,
that is, foVM2 Sy = 241 VM2 £, which is equivalent to the existence of a real constant
C such that

Sz =2p In(|f2]) + C

on each connected component of the dense open subset My \ f5 '({0}). Denoting
o = ua(f2), it can be deduced that

pe f3(S2 —3um)

ng 2 —
_ k2 fE2pIn(|fa]) + C — 3m)
2 2
M2 3uy — C
=+ - — (| fo]) ) f3-
2 2
This gives rise to a first-order ordinary differential equation for u(t) := fooF}, where
(EY)¢ is the local flow of v := vai#f;\z on some open subset of the regular set of fs.

Namely, [23] Sec. 2] again implies that, on any open subset where f5 has no critical
point and vanishes nowhere, (M2, go) is locally isometric to (R?,dt? & p(t)%ds?),
where p := #/o)' Moreover, along any integral curve « of v, which is a geodesic of
(M3, g2) because of VM2 f, being a pointwise eigenvector of (VM2)2 £y the function
u must satisfy the following first-order ordinary differential equation: for any ¢ in
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some nonempty open interval,

(32) Y= (A;Q (M 1m(|u|))u2>é

Except in possibly very particular cases — e.g. when pu; = us = C' = 0, in which u
is constant — the maximal existence time for such a solution u to is strictly
contained in R. Note also that, if u solves , then

1 31— C ~z
u = 3 <M22+(M12 — ln(|u))u2) (81 —C = 2p1 In(|ul))ur — py u'v)

_ (“22 + (% —_— ln(|u))u2)

= ) (=G — )

é-@u—g—unmwﬂmﬂ

= (= $ — mtn(ju))u,

where p; — € — pg In(|u|) = p1 — % by the above identity for Ss.
This implies that, given any nowhere vanishing solution u to on some open
interval I about 0, the function f(¢,s) := u(t) solves

V2f=u" Idpy = (,Ul - g) Id7as
on (M2,g0) := (I x &,dt* @ (Z,/((é)))QdS2), where ¥ = R or S'.

Still in the case where no, = 2, equation has not been considered yet in
the literature as far as we know. In the special subcase where u; = 0, which is
equivalent to S; = 0, equation can be rewritten under the form (VM1)2f; =
J1-Ricy, — (AMrfy) - 1d, which is the general form of an element of ker(L ) in
[6] when the underlying manifold is scalar-flat. In case ker(Lj ) # {0}, the metric
g1 is called static. Although it is unclear whether a nonconstant positive solution
f1 to that equation can exist on a complete M, there is a noncomplete example:

take the outer Schwarzschild manifold (R \ B, (1 + 52)*(-,-)) for some constant
m > 0, where r = r(z) = |z| in R?® and fi(z) = ig, see [6, p.145]. In case
M; is either closed, complete with nonnegative Ricci curvature or with so-called
moderate volume growth, the function f; must be constant. The latter two are due
to S.T. Yau [24, Cor. 1 p. 217] and to L. Karp [16, Theorem B] (see also [17} Sec.
3]) respectively, using only the harmonicity of fi. As a consequence, if n; = 2 (and

ng = 2), then there is no nonconstant solution f; (for S; = 0 implies Ricy, = 0).

Case ny > 2 and n; > 2: Then defines a so-called (0,n1 + ny — 1)-Einstein

metric on (M, g1) according to [14} 12] as we noticed in statement [1} As for (I3,

it has not been considered either in the literature when p; # 0 — for pu; =0, it is

already on My. When p1 # 0, we may take for (M52, ga, f2) the standard solu-

tion to the Obata resp. Tashiro equa(uti())n on the no-dimensional simply-connected
a1 (fa

spaceform of sectional curvature Sy which are the only Einstein solutions to
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(13) when ny > 2. This shows statement

In the particular case where (M™, g) is closed and f € C°°(M,RY) is such that
pi(f) = k|Vf|? — fAf is constant for some k € R, we can mimic the proof of
Lemma EE First, we have p;(f) = 0: it suffices to evaluate u1(f) at two points,
one where mjviln( f) is attained and one where m]‘;}x( f) is attained to obtain that

w1 (f) must be both nonpositive and nonnegative because of f > 0 and the opposite
signs of the Laplace operator of f at a minimum and maximum respectively.
Independently, we can integrate u(f) over M and obtain

() Vol ) = (k= 1)+ [ 1V .

Therefore, if k # 1, then f must be constant. If k = 1, the vanishing of u; (f) is

equivalent to Af = % > 0 on the closed manifold M, which with fM Afdug =0
shows that, again, Vf = 0 must hold on M, therefore f must also be constant on
M. This proves statement [4 and concludes the proof of Proposition [3.3 ([l

In case the factor (Mj,g1) of the warped product is complete, we show that
actually the map f must be constant along M.

Theorem 3.4. Let f =7} f1 -7} f2 satisfy on (M",g) = (My x My, g1 ® fg2)
for some smooth positive function fi on My and smooth function fo on Msy. Assume
(M1, 1) to be complete and connected.

Then f1 must be constant on My, the manifold (M1, g1) must be Ricci-flat and fo
must satisfy (1)) on (Ma, g2). Therefore, the map W (Ma, g2) — W (M, g) extending
any solutz’on to M is an isomorphism.

Proof. In case fi > 0 on M; and for f = 7} f1 - 75 f2 on M, X f2 Mo, the constants
w(f), na(f1) and po(f2) defined above are related as follows:

u(f) = fFAf+2Vf
= fif2(Af1) fo + i f2) + 2 f2(V 1) + AV fof?

= B h(AM ) o+ J@AMW LoV ) + ]Jf%szfQP

= [uAM ) fF + fo(AM fo) + 23|V 1] 4+ 2|V fof
= (AAM )+ 2V AT - S5+ f2AM fo + 2]V fo3
= (fo(AM f1) + 2]V AR 4 i (f) - f3

+ f2AM2 fo 4 2]V M2 o5 — pa (1) 3
= na| VM 113 4 pa(f2)

This implies that, if f # 0 solves and ¢ = fi > 0, then |[VMif|; is constant
on M. Note that this holds whether (M, g1) is complete or not, i.e. whenever
M is connected. From now on assume (Mj, g1) to be complete. By contradiction,
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if [VM1 f)|; were a positive constant, then f; would have no critical point on M
and therefore the flow of the normalised gradient vector field v := wxé\f%ffllll would
define a diffeomorphism from M; to the product R x ¥; for some smooth level
hypersurface X1 of fi; and f; would be a nonconstant affine linear function of
t € R. But this would contradict f; > 0 on M;. Therefore, VM f; = 0 must hold
on M i.e., fi must be constant on M;. In turn, this implies that pi(f1) = 0,
Ricps, = 0 when ng > 2 (anyway Ricp, = 0 when ny = 1 as we saw above) and
that fo € W(Ma, g2). Therefore, the function f is the trivial extension on M of
fo € W(Ma, ga). ([

4. CASE WHERE dim(W (M",g)) > 2

In this section, we look at the particular case where has a k£ > 2-dimensional
space of solutions.

Theorem 4.1. Let (M™,g) be any connected complete Riemannian manifold.
Assume that has a k > 2-dimensional space of solutions. Then we have one of
the following:

1. Case k = 2: the manifold (M™, g) must be isometric to the Riemannian product
(Mf*1 x R, g1 @ dt?) for some complete Ricci-flat manifold admitting no line
(M, g1). Moreover, the solutions of on (M™, g) are the affine linear
functions of t € R extended constantly along M, .

2. Case k > 2: the manifold (M™, g) must be isometric to the Riemannian product
(Mf*k+1 X Mzkfl,gl @ g2) for some complete Ricci-flat manifold admitting no
line (M{l_k+1,g1) and where (Mzk_l,gg) is either S2,R? or H? with standard
metric of curvature 1,0, —1 (up to rescaling g) for k = 3 or is R¥~! with standard
flat metric for k > 3. Moreover, the solutions of on (M™,g) are the solutions
of the Obata resp. Tashiro equation on (Mas, g2) extended constantly along M; .

Proof. We first assume M to be simply-connected. By [14, Theorem A], which
can be applied since is the particular case of the equation V2f = f - ¢ for some
quadratic form ¢ on T M, we already know that, if k > 2, then (M™, g) must be
isometric to the warped product (M; x My, g1 ® f£g2) for some smooth positive
function fi on M, where (M{L_k+1,gl) and (Mé“_l,gg) are complete [3, Lemma
7.2] simply-connected Riemannian manifolds and f; is a smooth positive function
on M. Moreover, (Ma, g2) must be a spaceform and any solution f of is of
the form f = n{ f1 - 75 fo, where f5 satisfies the Obata resp. Tashiro equation on
(Mz, g2) |14, Theorem B]. Taking the above considerations on solutions of (1) on
warped products into account in case f; is the warping function, Theorem [3.4] can
be applied and implies that f; is constant, that (Mi,¢g1) is Ricci-flat and that
fo € W(Ma, g2). We look at different cases according to k:

1. Case k = 2: then we could conclude above that fs is an affine linear function of
t € R. Since no nonconstant affine function can be periodic, any group action
leaving invariant some nonconstant fo € W(Ma, g2) must be trivial. Moreover,
if (M1,g91) could be split off a line, then it would be isometric to ¥; x R for
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some smooth hypersurface ¥; of Mi; but then M; x R 2 £; x R? would carry
a k > 3-dimensional space of solutions to , which would contradict k = 2.
Therefore, (M7, g1) cannot contain any line.

2. Case k > 2: then we could conclude above that fo € W(Ms, g2). If k = 3, then,
up to rescaling g, the manifold (Mz, g2) must be isometric to either S?,R? or H?
with standard metric of constant curvature 1,0, —1 respectively; and W (M, g2)
must consist of the solutions of the Obata resp. Tashiro equation on (Ms, g2)
as we saw in Lemma Again, in case My = S? or H?, no group action on
M5 can leave any nonzero solution to invariant on M. If My = R2?, then
no nontrivial group action preserves the 3-dimensional space of affine linear
functions on R2.

If £ > 3, then, as a consequence of Lemma the manifold (M, g2) must
be isometric to flat R*~! and again no nontrivial group action preserves the
k-dimensional space of affine linear functions on RF~1.

In both subcases, (M, g1) cannot contain any line, otherwise dim(W (M™, g)) >
kE+1.

In all cases, the only possible nontrivial group actions on M7 X Ms is trivial along
the Ms factor. Thus, if M is not simply-connected, then M must be isometric to
Mf_kﬂ X Mé“_l, where Ms is a simply connected model space as above and M;
is a complete Ricci-flat manifold having no line since its universal cover cannot
contain any. Furthermore, every f € W (M, g) must be the trivial extension on
M; x My of a solution fo € W(Ma, g2). This concludes the proof of Theorem
41l O

Note that, as a consequence of Theorem if a complete (M™, g) carries an
(n 4 1)-dimensional space of solutions to (1) with n # 2, then (M", g) must be
isometric to R**! with standard flat metric.

5. HOMOGENEOUS CASE
Next, we look at homogeneous manifolds carrying nontrivial solutions of .

Theorem 5.1. Let (M™,g) be any connected homogeneous Riemannian manifold.
Assume the existence of a mon-identically vanishing smooth function f on M

satisfying .
Then one of the following holds:

1. If the scalar curvature S of (M™, g) vanishes and f is nonconstant, then (M™, g)
must be isometric to a flat manifold Rn/l" for some discrete fized-point free
subgroup T' of O(n) x R™.

2. If k:=dim(W(M™, g)) =2, then (M™, g) must be isometric to the Riemannian
product Rn_l/p X R for some discrete fixed-point free and co-compact subgroup T’
of O(n — 1) x R*~1. In that case, the map W (R, dt?) — W (M",g) extending
any affine linear function trivially on the first factor is an isomorphism.

3. If k = 3, then up to rescaling g, the manifold (M™, g) must be isometric to
the Riemannian product RH_Q/F x S2(g), where S?(g) is the simply-connected
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complete surface of constant curvature € € {0,+1} and RH_Q/F is a compact flat
manifold. In that case, the map W (S?(e), gs2(c)) — W (M™, g) extending any
function trivially on the X-factor is an isomorphism.

4. Ifk >4, then (M™, g) must be isometric to the Riemannian product R+ o

RE=1 . where Rn_kﬂ/r is a compact flat manifold and RF¥=1 carries its standard
Euclidean metric.

5. If k=1, then unless W (M™, g) consists of constant functions, u(f) =0 must
hold for every f € W. Moreover, the manifold (M™, g) must be a one-dimensional

extension of some homogeneous Riemannian manifold satisfying the particular
conditions below.

Proof. If (M", g) has vanishing scalar curvature and f is nonconstant, then we
already know from Lemma that (M™, g) must be Ricci-flat. But because any
homogeneous Ricci-flat Riemannian manifold must be flat [I], actually (M™, g) must
be isometric to a flat manifold Rn/p for some discrete and necessarily fixed-point
free subgroup I" of O(n) x R™. This shows statement

If dim(W(M™,g)) = k > 2, then Theorem implies that (M"™,g) must be
isometric to the Riemannian product M7~ *+1x MF=1 where M %1 is a Ricci-flat
manifold containing no line and Mgk ~1 is flat Euclidean space except when k = 3, in
which case it is also allowed to be S? or H? with standard spherical resp. hyperbolic
metric. Moreover, any solution to must be the trivial extension to M of a
standard solution on M. Now recall the following result, which is a combination of
Lemma 5.6 and the first part of the proof of Theorem 5.7 in [I2]; the latter can be
applied because of W(M™, g) being invariant under isometry: in our notation, the
isometries of (M7 x M, g1 @ go) are the maps of the form h = (hy, hg), where hy and
hs are isometries of (Mj,g1) and (Ma, go) respectively. This already implies that,
writing M = G/K, the group G when can be embedded into the direct product of
two groups, the first one acting isometrically and transitively on M; and the second
one acting transitively on Ms. In particular, (M7, g1) must itself be homogeneous.
In turn, this implies that, being Ricci-flat, (M7, g1) must be flat, again by [I.
Therefore (M, g1) must be isometric to Rnikﬂ/p for some discrete fixed-point
free subgroup I' of O(n — k + 1) x R***1. Since only compact flat manifolds have
no line, the subgroup I' must be co-compact i.e., M7 must be compact. This shows
statements and [

Let us now assume the space W(M™, g) of functions satisfying to be
one-dimensional on M = G/i. Then as in [I2} Sec. 5] we consider the action of G
on W(M",g). Because the Ricci-tensor of M is isometry- and thus G-invariant,
S0 is equation , i.e. for every f satisfying and every h € G, the function
f o Ly-1 also satisfies (I). But because of dim(W (M™,g)) = 1, there exists for a
fixed nonzero f € W(M™,g) and every h € G a nonzero constant Cj, such that
folLp-1=Cy-f. The map G — R*, h — C}, is a Lie-group homomorphism and
actually takes its values in {£1} if u(f) # 0 since, by invariance of pu(f) under
isometry,

p(f) = p(foLp-—)=pu(Cp-f)=Ch- u(f)
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for every h € G. Therefore, if u(f) # 0, then Cy, € {£1} for every h € G. Now if M
is connected as in the assumptions, then so can be assumed G (otherwise replace
G by the connected component of the neutral element), in which case necessarily
Cr =1 holds for every h € G and therefore every f € W(M™, g) is constant.

Therefore pu(f) = 0 holds. As a consequence, S = —2 and f has no critical point
on M, see Lemma [2.1]

Next we show that (M™,g) must be the one-dimensional extension of some
homogeneous Riemannian manifold N*~! with Ricci-tensor having particular
properties. Consider the subgroup H of G defined by

H:={heG|Cp=1},

that is, H is the subgroup of all elements of G leaving a (thus any) function
f € W(M™,g) invariant. Since C': G — R is a nontrivial and therefore surjective
Lie-group-homomorphism, H = ker(C) is a closed normal subgroup of G and of
codimension 1. Moreover, fixing f € W(M",g) \ {0}, we know from Lemma
that f(M) = R} = (0,00) since f can be expressed as an exponential function
along any integral curve of its normalised gradient. We let N := f~1({1}), which is
a smooth hypersurface of M. By definition, H leaves N invariant. Moreover, fixing
some x € N, any h € G with Lj,(z) = x must satisfy C;, = 1 and therefore lie in
H. In other words, the isotropy group H, := {h € H | Lp(z) = x} of  under the
H-action must coincide with K = G,. Independently, for any y € N, there is an
h € G such that Ly (z) = y; again, because of f(z) = f(y) # 0, necessarily Cj, = 1
must hold, i.e. h € H. This proves that the orbit H - x := {Lp(x) |h € H} of
in N must be all of N and therefore N = H/f is a H-homogeneous Riemannian
manifold. As in the proof of [I3] Theorem 5.1], we split the Lie algebra G = P & K
of G in an Adg(K)-invariant and orthogonal way and let £ € P = TM be the
vector corresponding to v € T+ N. Note that, because of C|,; = 1, the gradient
of f and therefore also v are preserved by the H-action, so that £ makes sense.
Actually, P =R¢@ ((RE)F N P) and H = ((RE)* N P) @ K, the splittings being
orthogonal. Furthermore, the Lie-bracket of £ in G preserves H because of H being
a normal subgroup of G. This already proves that G = H x R and that (M, g) is
the one-dimensional extension of the H-homogeneous space (N1, g/ ).

In that case, following [13], we fix some o € R* and let D := 1[¢,-] = 1L,
which is hence a derivation of H. We denote by S and A the symmetric and
skew-symmetric parts of D respectively seen as endomorphisms of T'N, see [13, Eq.
(2.1)]. Let 7 := —V¢ denote the Weingarten map of N in M. Then by [13, Prop.
2.7] we have 7 = a8 and V7 = —a?[S, A]. Furthermore, [I3, Lemma 2.9] implies
that, for all X, Y € TN,

ric(§,€) = —a*tr(S?)
ric(X,€) = a(dS)(X)
ric(X,Y) =r1icV(X,Y) — (a?t1(S))g(SX,Y) — a?g([S, A]X,Y)

Now writing f(t) = e, where ¢ lies in the R-factor of G = H x R, we have
Vdf = fdt* — fg(T,-) which, together with V¢ = 0, gives that identity is
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equivalent to

a?tr(8?) (= a?|S)?) =1

a(dS) =0

—ag(8X,Y) = —1icV(X,Y) + a?tr(S)g(SX,Y) + a?g([S, A| X, Y)
for all X,Y € T'N. In other words, is equivalent to

€

@ 5]
(33) 58 0

Ricy = ﬁ ((tr(S) +€|S)) S + [S, A])

for some € € {£1}. This shows statement [5| and completes the proof of Theorem

b1 O
Note that [21, Theorem 1.5] allows for some partial classification in case (M™, g)
is homogeneous, because in their notation our 2-tensor ¢ = —Ric is preserved by

the group action. Nevertheless, we point out that the results we obtain in Theorem
describe the underlying space as well as the space of solutions in a more detailed
way according to the dimension.

The case where dim(W(M", g)) = 1 could lead to new examples, see [I3] and
1.

6. KAHLER CASE
As in [B], we next consider the case where (M", g) is assumed to be Ké&hler.

Theorem 6.1. Assume (M?>",g,J) to be a complete Kéihler manifold and let f
be any nonconstant smooth real-valued function satisfying on M. Then, up
to rescaling g, the Kdhler manifold (M®",g,J) is holomorphically isometric to
S2(g) x ¥2"=2 for some Ricci-flat Kihler manifold 33, where S?(¢) =S? if e =1,
H? if e = —1 and either R? or R x S if ¢ = 0; moreover, the Kéihler structure is
the product Kdhler structure and f is the trivial extension to M of a solution to

[@ on S*(e).

Proof. The first steps follow those in the proof of [5, Theorem 1.3]. Since the
Ricci-tensor of (M, g, J) is J-invariant, so is the Hessian of f by , ie. V2folJ =
JoV2f. As a first consequence, the vector field JV f is a (real) holomorphic vector
field on (M, g,J) and therefore its zeros — which are precisely the critical points
of f — form a totally geodesic Kéahler submanifold of M of dimension 2k < 2n; in
particular the regular set of f is dense in M. As a second consequence, the 2-form
g(V2foJ-,-) may be rewritten %Evfﬂ, where Q := g(J-,-) is the Kéhler form of
(M, g,J). Therefore,

d(g(Vifold-,)) = %d(ﬁwﬁ) = %d(VdeQ +d(Vfi) =0,

ie. g(V2foJ-,:)is a closed 2-form on M. But because the Ricci-form g(Rico J-,-)
is also closed on M, so is the 2-form +g(V?fo J-,-) on {f # 0}, again by (T). This
implies df A (g(V2f o J-,-)) =0 on {f # 0} and therefore on M by density (recall
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that f=1({0}), if nonempty, is a totally geodesic hypersurface of (M, g)). In turn
this implies the existence at each regular point of f of a linear form A on (Vf)+
such that, for every X 1 Vf,

(34) Vi f = AX)VS.

For X = JV f, we obtain via that V.S is pointwise tangent to Vf, i.e. there
exists a function 6§ on M such that VS = 0V f on M (this holds true on the
regular set of M and hence on M by density, taking into account that at every
critical point both Vf and V.S vanish). For X € {Vf, JVf}*, by J-invariance of
V2f the r.h.s. of must vanish whenever the basepoint is a regular point of
f. In turn this implies Ric(X) = 0 for all X € {Vf, JVf}* and at every regular

point of f. Now because of Ric(Vf) = (% + %) Vf, the J-invariance of Ric and

R = 0, we obtain

1C‘{VfJVf}L
fo

2 )

so that 8 = 0, first on the regular set of f and then on M by density, i.e. S is constant
on M. This implies that both distributions Span(Vf, JVf) and {Vf, JVf}+ are
integrable and totally geodesic, the former one being the tangent bundle of a surface
of curvature g — which may be assumed to be +1 up to rescaling g in case S # 0
— and the latter the tangent bundle of a necessarily Ricci-flat Kahler manifold .

The rest of the proof is analogous to that of Theorem [2.2 O

S=S+

7. OUTLOOK

The equation can be seen as a particular case of the more general equation

f

(35) V%:—Z#Rm—Amh7

where A € R and m € N are parameters which are a priori allowed to take arbitrary
values. Note that, for m = n — 2 and positive f, equation is the same as
equation (7) in [19, Lemma 2.1]. As in [IT], 13} 14, 12], a much broader and richer
family of geometries could be recovered from Equation . This is the object of
future work.
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