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THE CR GEOMETRY OF THE THREE-SEGMENT SNAKE

Tymon Frelik

Abstract. We study the geometry associated with the kinematics of a planar
robot known as the three-segment snake, whose velocity distribution belongs
to a class of (2, 3, 5) distributions. We discover that, under certain assumptions
on its construction parameters, the snake may be endowed with a CR structure
of CR dimension 1 and real codimension 3. We solve the associated Cartan
equivalence problem and find the invariants of the snake’s CR structure.

1. The three-segment snake

1.1. Introduction. In the present note, we study the geometry associated with
the kinematics of a planar robot we refer to as the three-segment snake (also known
as the three-link or the three-edge snake). The geometric approach to control theory
has a long history [2, 8]. This work is to be seen as a part of a research program
within it, initiated by Paweł Nurowski, who observed that simple mechanical
systems originating in robotics and control theory provide a rich reservoir for highly
symmetric geometric structures [1, 6]. The three-segment snake discussed here is
one of the simplest such examples.

Geometric treatment of the three-segment snake is found in the work of Masato
Ishikawa [7], who notably developed its control algorithm employing Ambrose-Sin-
ger’s holonomy theorem and verified it experimentally. Observing that the velocity
distribution has the (small) growth vector (2, 3, 5), Nurowski asked the following
question: can the construction parameters of the snake, such as wheel positions
and segment lengths, be adjusted in such a way that the algebra of infinitesimal
symmetries is the 14-dimensional split real form of the complex exceptional Lie
algebra g2?

The answer to the question was obstructed by the computational complexity
involved in finding the associated Cartan’s quartic invariant [4]. In search of a
geometric structure that could aid the hunt for a G2-snake, Nurowski observed
[12] that, under a certain assumption on wheel placement, the (2, 3, 5) distribution
may be endowed with a natural CR structure, arising from the embedding of the
5-dimensional configuration space of the snake in the 8-dimensional space of all
possible positions of all possible snakes in the Euclidean plane.
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Fig. 1: The three-segment snake in the Euclidean plane.

The geometry of CR structures associated with embeddings of generic 5-manifolds
in C4 has been studied by Merker et al. [9, 10] and, independently, by Nurowski.
In the present work, we study Nurowski’s previously-unpublished results and give
an invariant characterization of the CR structure associated with the snake by
employing Cartan’s equivalence method.

Another recent geometric study of the model may be found in [5].

1.2. The configuration space. The three-segment snake is a mobile robot moving
in the Euclidean plane, constructed by attaching three line segments of fixed lengths.
The line segments are free to rotate around the points of two connecting joints.
Each segment has a pair of wheels attached at a fixed point. Their role is to direct
the segments’ motion.

The shape of a three-segment snake is described by four points qi = (xi, yi) ∈ R2,
i = 1, 2, 3, 4 (see Figure 1) so that any snake in any position may be described
by a point in q ∈ R8. Without loss of generality, one may assume the length of
the middle segment to be equal to 1 and the lengths of two outer segments to
be determined by their wheels’ placement. For any given snake, one requires the
length of each segment to be constant, that is,

h1 = |q2 − q1|2 − s2
1 = (x2 − x1)2 + (y2 − y1)2 − s2

1 = 0 ,
h2 = |q3 − q2|2 − 1 = (x3 − x2)2 + (y3 − y2)2 − 1 = 0 ,
h3 = |q4 − q3|2 − s2

3 = (x4 − x3)2 + (y4 − y3)2 − s2
3 = 0 ,

where scaling parameters s1, s3 ∈ R+ specify the length of two outer segments.
A parameter s2 ∈]0, 1[ describes the wheel placement on the middle segment at a
point s2q2 + (1− s2)q3. These constraints are holonomic, since they depend only on
positions. This exhibits the configuration space of the snake, as a five-dimensional
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submanifold M ⊂ R8 given as the zero set
M = {q ∈ R8 h1(q) = h2(q) = h3(q) = 0} .

The zero set of polynomials h1, h2, h3 defines a foliation of R8 by five-dimensional
leaves M , locally diffeomorphic to R2 × S1 × S1 × S1. Coordinates (x, y, θ, φ, ψ)
adapted to the foliation M are most conveniently obtained by visual analysis of the
system described in the Figure 1. This parametrization is manifestly invariant with
respect to the action of the group SE(2) := SO(2) n R2 of orientation-preserving
isometries of the plane.

2. Non-holonomic constraints on the snake’s movement

The wheels are meant to prevent each of the segments from skidding sideways.
This amounts to limiting the admissible displacements of each segment to a direction
of the instantaneous orientation of the wheels. Formally, one requires that

dq1||(q2 − q1), d((1− s2)q2 + s2q3)||(q3 − q2), dq4||(q4 − q3) .
These conditions constitute a Pfaffian system, which may be rewritten in terms
of vanishing of the forms Υ1,Υ2,Υ3 ∈ Ω1(R8) . In coordinates (x, y, θ, φ, ψ), the
system reads

Υ1 = sin(φ+ θ)dx− cos(φ+ θ)dy − (s2 cosφ− s1)dθ + s1dφ ,
Υ2 = sin θdx− cos θdy ,
Υ3 = sin(ψ + θ)dx− cos(ψ + θ)dy − ((1− s2) cosψ − s3)dθ − s3dψ .

The kernel of {Υ1,Υ2,Υ3} is a rank 2 distribution D = spanC∞(M){ξ4, ξ5} ⊂ TM
of admissible velocities with

ξ4 = ∂θ − (1− s2
s1

cosφ)∂φ − (1− 1−s2
s3

cosψ)∂ψ ,
ξ5 = cos θ∂x + sin θ∂y + 1

s1
sinφ∂φ − 1

s3
sinψ∂ψ .

The distribution D is bracket generating, since

ξ3 := [ξ5, ξ4] = sin θ∂x − cos θ∂y − 1
s1

Ä
s2
s1
− cosφ

ä
∂φ + 1

s3

Ä
1−s2
s3
− cosψ

ä
∂ψ ,

ξ2 := [ξ5, ξ3] = − 1
s2

1
(1− s2

s1
cosφ)∂φ − 1

s2
3
(1− 1−s2

s3
cosψ)∂ψ ,

ξ1 := [ξ4, ξ3] = cos θ∂x + sin θ∂y + s2
1−s

2
2

s3
1

sinφ∂φ + (1−s2)2−s2
3

s3
3

sinψ∂ψ

satisfy ∧5
i=1ξi 6= 0 at a generic point. The tangent bundle is seen to admit a two-step

filtration D ⊂ [D,D] ⊂ [D, [D,D]] = TM , placing D in the class of distributions
with the (small) growth vector (2, 3, 5) or (2, 3, 5) distributions, for short. These are
generic rank 2 distributions on 5-manifolds. This is in contrast with other possible
nonholonomic planar systems, such as, for instance, a car [6] pulling a single trailer
[8], whose growth vector is (2, 3, 4, 5).

We will call two (2, 3, 5) distributions equivalent if there exists a diffeomorphism
f : M →M such that f∗D = D.

Generic rank 2 distributions in dimension 5 were first studies by Élie Cartan in the
celebrated 1910 “five-variables paper” [4]. In the terminology of parabolic geometry
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[3], (2, 3, 5) distributions are described by parabolic geometries of type (G2,P) with
P a 9-dimensional parabolic subgroup. In particular, the maximal symmetry algebra
of a (2, 3, 5) distribution is the split real form of the 14-dimensional exceptional Lie
algebra g2. This occurs for a flat (in the Cartan-theoretic sense) (2, 3, 5) distribution.

In our case, only three infinitesimal symmetries

ς1 = ∂x , ς2 = ∂y , ς3 = y∂x − x∂y − ∂θ

are immediate from the SE(2)-invariant parametrization of M . These are the
generators of se(2) = so(2)⊕ R2.

In another modern treatment of (2, 3, 5) distributions [11], it is shown that each
equivalence class of (2, 3, 5) distributions defines a canonical conformal class of
metrics of signature (2, 3), which can be algorhithmically computed. Furthermore,
the Weyl tensor of such a conformal class contains the information about all basic
differential invariants of (M,D). The vanishing of the simplest of these invariants,
the so-called Cartan’s quartic, is required for a maximally symmetric (2, 3, 5)
distribution.

The question motivating the author’s consideration of the three-segment snake
robot model is the following. Does there exist a choice of parameters s1, s2, s3
such that the algebra of symmetries of D is g2? Even with the above algorithm,
the question is too computationally complex to answer. We thus search for more
geometric structure associated with the snake, which could reduce the computational
complexity involved.

3. The CR structure of M ⊂ C4

Let J denote a complex structure on R2(n+k) so that (R2(n+k),J ) ∼= Cn+k. An
embedding of a real (2k + n)-dimensional manifold M in Cn+k gives rise to a CR
structure of real codimension n and CR dimension k (type (n, k)). Such a CR
structure may be described intrinsically by the distribution D := J (TM) ∩ TM of
rank 2k. Then, J restricts to an endomorphism J : D → D. Such defined triple
(M,D,J ) is referred to as a CR manifold.

Recall that M is naturally embedded in R8 as a submanifold of codimension 3.
Furthermore, it is endowed with a corank 3 distribution D. There are many ways
of identifying R8 ∼= C4. In fact, the space of (linear) complex structures on R8 may
be identified with GL(8,R)/GL(4,C). Consequently, there are many ways that one
could endow M ⊂ R8 with a CR structure, depending on a choice of a complex
structure on R8.

Hence, one may pose the following question. Does there exist a constant linear
map J : R8 → R8 satisfying J 2 = −id such that J (TM)∩TM = D? The following
theorem, originally proved by Paweł Nurowski [12], provides a surprising answer.

Theorem 1. A complex structure J : R8 → R8 such that J (TM) ∩ TM = D
exists if and only if s2 = 1

2 , i.e., the wheels of the middle segment are precisely in
the center. Moreover, when s2 = 1

2 , such J is unique.
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Therefore, a complex structure J endowing (M,D,J ) with a structure of a CR
manifold exists if and only if s2 = 1

2 . Then, the complex structure J reads

J =



0 0 0 0 | −1 1 0 0
0 0 0 0 | 0 1 0 0
0 0 0 0 | 0 0 −1 0
0 0 0 0 | 0 0 −1 1
− − − − − − − − −
1 −1 0 0 | 0 0 0 0
0 −1 0 0 | 0 0 0 0
0 0 1 0 | 0 0 0 0
0 0 1 −1 | 0 0 0 0

 .

The holomorphic coordinates (z1, z2, z3, z4) on C4 defined by J are
z1 = x1 + i(y2 − y1) , z2 = x2 + iy2 , z3 = x3 + iy3 , z4 = x4 + i(y4 − y3) .
The complex structure J restricts to the real 2-plane field D and, at a point

in M , is equivalent to the unique complex structure given by i multiplication on
C ∼= R2. The distribution D is spanned by ζ±, the ±i-eigenvector fields of J .

4. The Cartan equivalence problem for (2, 3, 5) CR structures

The CR structure (M,D,J ) associated with the snake will be considered among
all generic type (3, 1) CR structures by employing Cartan’s equivalence method.
We will also refer to these structures as (2, 3, 5) CR structures for short. Their
equivalence problem has been solved in [10] and a canonical Cartan connection
has been constructed in [9]. In this case, since one wishes to preserve the complex
structure, we speak of biholomorphic rather than just diffeomorphic equivalence.

Generic CR structures of type (3, 1) may be realized as Cartan geometries of type
(G7,C×), where G7 is a certain 7-dimensional real Lie group and C× = GL(1,C)
the multiplicative group. The corresponding 5-dimensional Lie algebra n = g7/C is
nilpotent and defined by the only three non-vanishing relations

[e1, e2] = e3 , [e1, e3] = e4 , [e2, e3] = e5

between its generators e1, e2, e3, e4, e5.

Definition 1. A coframe {ω1, ω2, ω3, ω4, ω5} is called adapted to a (2, 3, 5) CR
structure (M̃, D̃, J̃ ) if D̃ = ker(ω1, ω2, ω3), ω1 = ω̄2 and ω4 = ω̄5, where conjugates
are taken with respect to J .

To restrict ourselves to five variables adapted to M in solving the equivalence
problem for (M,D,J ), we solve the system of polynomials h1, h2, h3, substituting

2z1 − z2 − z̄2 = 2s1e
iβ1 , z2 − z3 = eiβ2 , 2z4 − z3 − z̄3 = 2s3e

iβ3

so that (β1, β2, β3, z2, z̄2) are the coordinates on M . To supplement Υ1,Υ2,Υ3 to
an adapted coframe on M , it suffices to choose any pair of complex conjugate
coordinate 1-forms, so we pick dz2,dz̄2. The coframe takes the form
ω̃1 = Υ1 + iΥ2 , ω̃2 = Υ1 − iΥ2 , ω̃3 = Υ3 , ω̃4 = dz2 , ω̃5 = dz̄2

and we verify that ω̃1 ∧ ω̃2 ∧ ω̃3 ∧ ω̃4 ∧ ω̃5 6= 0.
The following two theorems are based on Nurowski’s unpublished results on

(2, 3, 5) CR structures. Their equivalent alternative versions are in [9, 10].
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Theorem 2. Two (2, 3, 5) CR structures are equivalent if their adapted coframes
are related by a transformation belonging to the 10-dimensional GL(5,C)-subgroup

H =


Ñ

g1ḡ1
2 0 0 0 0

0 g2
1 ḡ1 0 0 0

ḡ3 g3 g1ḡ1 0 0
ḡ5 g4 ḡ2 ḡ1 0
ḡ4 g5 g2 0 g1

é
∈ GL(5,C) : gi ∈ C, g1 6= 0

 ,

given with respect to {ω̃1, ω̃2, ω̃3, ω̃4, ω̃5}.

Theorem 3. Given a coframe of 1-forms {ω̃1, ω̃2, ω̃3, ω̃4, ω̃5} on M , one can
always find h ∈ H, such that ωi = hijω̃

j satisfy the exterior differential system

dω1 = −ω1 ∧ Ω1 + Jω2 ∧ ω4 + ω3 ∧ ω5 ,

dω3 = iTω1 ∧ ω2 + Sω1 ∧ ω3 + Lω1 ∧ ω5 + S̄ω2 ∧ ω3

+ L̄ω2 ∧ ω4 − 1
3ω

3 ∧ Ω1 − 1
3ω

3 ∧ Ω2 + iω4 ∧ ω5 ,

dω4 = Qω1 ∧ ω2 + Gω1 ∧ ω3 − (S− J̄V̄)ω1 ∧ ω4 −Nω1 ∧ ω5 + Kω2 ∧ ω3

− Fω2 ∧ ω4 + Bω2 ∧ ω5 −Vω3 ∧ ω5 − iAω3 ∧ ω4 + 1
3ω

4 ∧ Ω1 − 2
3ω

4 ∧ Ω2 ,

where {ω1, ω2, ω3, ω4, ω5,Ω1,Ω2}, with ω2 = ω̄1, ω5 = ω̄4 and Ω2 = Ω̄1, constitute
a coframe on G7, while J,T,S,L,Q,G,V,N,K,F,B,A ∈ C∞(M). The latter 12
functions are the differential invariants of the CR structure and satisfy (among
other similar relations not included here) the relevant relation
(1) dJ = −(N̄− iAJ)ω3 − L̄ω5 + 4

3JΩ1 − 5
3JΩ2 + J1ω

1 + J2ω
2 + J4ω

4

with J1, J2, J3 ∈ C∞(M). The (non-)vanishing of each of the 12 functions is an
invariant property of the corresponding CR structure.

For the CR structure (M,D,J ) of the snake, the primary invariant J (denoted
by R in [10]) vanishes identically, which by (1) also implies the vanishing of N and
L. As indicated in [10], (2, 3, 5) CR structures belonging to the branch J ≡ 0 admit
a reduction of the H-structure to a 2-dimensional subgroup HJ ⊂ H. In our case,
it is determined to be of the form

HJ =


Ñ

g1ḡ1
2 0 0 0 0

0 g2
1 ḡ1 0 0 0

0 0 g1ḡ1 0 0
0 0 g2 ḡ1 0
0 0 ḡ2 0 g1

é
∈ GL(5,C) : g1, g2 ∈ C, g1 6= 0

 .

To proceed, we are forced to reduce the computational complexity of the problem.
We introduce a mild assumption on the construction of the snake, setting s1 = s3.

In the end, we verify that the CR structure of the snake with the parameters
s2 = 1

2 and s1 = s3 is described by the vanishing of the four invariants
J ≡ 0, N ≡ 0, L ≡ 0, F ≡ 0 .

The other eight are non-vanishing regardless of the value of s1 = s3.
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